Description: Equality theorem for indexed intersection. Inference version. General version of iineq1i . (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iineq12i.1 | |- A = B |
|
| iineq12i.2 | |- C = D |
||
| Assertion | iineq12i | |- |^|_ x e. A C = |^|_ x e. B D |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq12i.1 | |- A = B |
|
| 2 | iineq12i.2 | |- C = D |
|
| 3 | 2 | eleq2i | |- ( t e. C <-> t e. D ) |
| 4 | 1 3 | raleqbii | |- ( A. x e. A t e. C <-> A. x e. B t e. D ) |
| 5 | 4 | abbii | |- { t | A. x e. A t e. C } = { t | A. x e. B t e. D } |
| 6 | df-iin | |- |^|_ x e. A C = { t | A. x e. A t e. C } |
|
| 7 | df-iin | |- |^|_ x e. B D = { t | A. x e. B t e. D } |
|
| 8 | 5 6 7 | 3eqtr4i | |- |^|_ x e. A C = |^|_ x e. B D |