Metamath Proof Explorer


Theorem iineq12i

Description: Equality theorem for indexed intersection. Inference version. General version of iineq1i . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses iineq12i.1
|- A = B
iineq12i.2
|- C = D
Assertion iineq12i
|- |^|_ x e. A C = |^|_ x e. B D

Proof

Step Hyp Ref Expression
1 iineq12i.1
 |-  A = B
2 iineq12i.2
 |-  C = D
3 2 eleq2i
 |-  ( t e. C <-> t e. D )
4 1 3 raleqbii
 |-  ( A. x e. A t e. C <-> A. x e. B t e. D )
5 4 abbii
 |-  { t | A. x e. A t e. C } = { t | A. x e. B t e. D }
6 df-iin
 |-  |^|_ x e. A C = { t | A. x e. A t e. C }
7 df-iin
 |-  |^|_ x e. B D = { t | A. x e. B t e. D }
8 5 6 7 3eqtr4i
 |-  |^|_ x e. A C = |^|_ x e. B D