Metamath Proof Explorer


Theorem iuneq2f

Description: Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018)

Ref Expression
Hypotheses iuneq2f.1
|- F/_ x A
iuneq2f.2
|- F/_ x B
Assertion iuneq2f
|- ( A = B -> U_ x e. A C = U_ x e. B C )

Proof

Step Hyp Ref Expression
1 iuneq2f.1
 |-  F/_ x A
2 iuneq2f.2
 |-  F/_ x B
3 1 2 nfeq
 |-  F/ x A = B
4 id
 |-  ( A = B -> A = B )
5 eqidd
 |-  ( A = B -> C = C )
6 3 1 2 4 5 iuneq12df
 |-  ( A = B -> U_ x e. A C = U_ x e. B C )