Metamath Proof Explorer
		
		
		
		Description:  Equality deduction for indexed union.  (Contributed by Giovanni
       Mascellani, 9-Apr-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | iuneq2f.1 | ⊢ Ⅎ 𝑥 𝐴 | 
					
						|  |  | iuneq2f.2 | ⊢ Ⅎ 𝑥 𝐵 | 
				
					|  | Assertion | iuneq2f | ⊢  ( 𝐴  =  𝐵  →  ∪  𝑥  ∈  𝐴 𝐶  =  ∪  𝑥  ∈  𝐵 𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iuneq2f.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | iuneq2f.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 | 1 2 | nfeq | ⊢ Ⅎ 𝑥 𝐴  =  𝐵 | 
						
							| 4 |  | id | ⊢ ( 𝐴  =  𝐵  →  𝐴  =  𝐵 ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝐴  =  𝐵  →  𝐶  =  𝐶 ) | 
						
							| 6 | 3 1 2 4 5 | iuneq12df | ⊢ ( 𝐴  =  𝐵  →  ∪  𝑥  ∈  𝐴 𝐶  =  ∪  𝑥  ∈  𝐵 𝐶 ) |