Metamath Proof Explorer
Description: Equality deduction for indexed union. (Contributed by Giovanni
Mascellani, 9-Apr-2018)
|
|
Ref |
Expression |
|
Hypotheses |
iuneq2f.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
iuneq2f.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
iuneq2f |
⊢ ( 𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iuneq2f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
iuneq2f.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
1 2
|
nfeq |
⊢ Ⅎ 𝑥 𝐴 = 𝐵 |
4 |
|
id |
⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) |
5 |
|
eqidd |
⊢ ( 𝐴 = 𝐵 → 𝐶 = 𝐶 ) |
6 |
3 1 2 4 5
|
iuneq12df |
⊢ ( 𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ) |