Metamath Proof Explorer


Theorem iuneq2f

Description: Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018)

Ref Expression
Hypotheses iuneq2f.1 𝑥 𝐴
iuneq2f.2 𝑥 𝐵
Assertion iuneq2f ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 iuneq2f.1 𝑥 𝐴
2 iuneq2f.2 𝑥 𝐵
3 1 2 nfeq 𝑥 𝐴 = 𝐵
4 id ( 𝐴 = 𝐵𝐴 = 𝐵 )
5 eqidd ( 𝐴 = 𝐵𝐶 = 𝐶 )
6 3 1 2 4 5 iuneq12df ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )