Metamath Proof Explorer


Theorem rabeq12f

Description: Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Hypotheses rabeq12f.1 𝑥 𝐴
rabeq12f.2 𝑥 𝐵
Assertion rabeq12f ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥𝐴 ( 𝜑𝜓 ) ) → { 𝑥𝐴𝜑 } = { 𝑥𝐵𝜓 } )

Proof

Step Hyp Ref Expression
1 rabeq12f.1 𝑥 𝐴
2 rabeq12f.2 𝑥 𝐵
3 rabbi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ { 𝑥𝐴𝜑 } = { 𝑥𝐴𝜓 } )
4 3 biimpi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → { 𝑥𝐴𝜑 } = { 𝑥𝐴𝜓 } )
5 1 2 rabeqf ( 𝐴 = 𝐵 → { 𝑥𝐴𝜓 } = { 𝑥𝐵𝜓 } )
6 4 5 sylan9eqr ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥𝐴 ( 𝜑𝜓 ) ) → { 𝑥𝐴𝜑 } = { 𝑥𝐵𝜓 } )