Description: Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabeq12f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
rabeq12f.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
Assertion | rabeq12f | ⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq12f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
2 | rabeq12f.2 | ⊢ Ⅎ 𝑥 𝐵 | |
3 | rabbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) | |
4 | 3 | biimpi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
5 | 1 2 | rabeqf | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |
6 | 4 5 | sylan9eqr | ⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |