Metamath Proof Explorer


Theorem ixpprc

Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain A , which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015)

Ref Expression
Assertion ixpprc
|- ( -. A e. _V -> X_ x e. A B = (/) )

Proof

Step Hyp Ref Expression
1 neq0
 |-  ( -. X_ x e. A B = (/) <-> E. f f e. X_ x e. A B )
2 ixpfn
 |-  ( f e. X_ x e. A B -> f Fn A )
3 fndm
 |-  ( f Fn A -> dom f = A )
4 vex
 |-  f e. _V
5 4 dmex
 |-  dom f e. _V
6 3 5 eqeltrrdi
 |-  ( f Fn A -> A e. _V )
7 2 6 syl
 |-  ( f e. X_ x e. A B -> A e. _V )
8 7 exlimiv
 |-  ( E. f f e. X_ x e. A B -> A e. _V )
9 1 8 sylbi
 |-  ( -. X_ x e. A B = (/) -> A e. _V )
10 9 con1i
 |-  ( -. A e. _V -> X_ x e. A B = (/) )