Metamath Proof Explorer


Theorem joinlmuladdmuld

Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)

Ref Expression
Hypotheses joinlmuladdmuld.1
|- ( ph -> A e. CC )
joinlmuladdmuld.2
|- ( ph -> B e. CC )
joinlmuladdmuld.3
|- ( ph -> C e. CC )
joinlmuladdmuld.4
|- ( ph -> ( ( A x. B ) + ( C x. B ) ) = D )
Assertion joinlmuladdmuld
|- ( ph -> ( ( A + C ) x. B ) = D )

Proof

Step Hyp Ref Expression
1 joinlmuladdmuld.1
 |-  ( ph -> A e. CC )
2 joinlmuladdmuld.2
 |-  ( ph -> B e. CC )
3 joinlmuladdmuld.3
 |-  ( ph -> C e. CC )
4 joinlmuladdmuld.4
 |-  ( ph -> ( ( A x. B ) + ( C x. B ) ) = D )
5 1 3 2 adddird
 |-  ( ph -> ( ( A + C ) x. B ) = ( ( A x. B ) + ( C x. B ) ) )
6 5 4 eqtrd
 |-  ( ph -> ( ( A + C ) x. B ) = D )