Metamath Proof Explorer


Theorem joinlmuladdmuld

Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)

Ref Expression
Hypotheses joinlmuladdmuld.1 φA
joinlmuladdmuld.2 φB
joinlmuladdmuld.3 φC
joinlmuladdmuld.4 φAB+CB=D
Assertion joinlmuladdmuld φA+CB=D

Proof

Step Hyp Ref Expression
1 joinlmuladdmuld.1 φA
2 joinlmuladdmuld.2 φB
3 joinlmuladdmuld.3 φC
4 joinlmuladdmuld.4 φAB+CB=D
5 1 3 2 adddird φA+CB=AB+CB
6 5 4 eqtrd φA+CB=D