| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kur14lem.j |
|- J e. Top |
| 2 |
|
kur14lem.x |
|- X = U. J |
| 3 |
|
kur14lem.k |
|- K = ( cls ` J ) |
| 4 |
|
kur14lem.i |
|- I = ( int ` J ) |
| 5 |
|
kur14lem.a |
|- A C_ X |
| 6 |
2
|
ntrval2 |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) = ( X \ ( ( cls ` J ) ` ( X \ A ) ) ) ) |
| 7 |
1 5 6
|
mp2an |
|- ( ( int ` J ) ` A ) = ( X \ ( ( cls ` J ) ` ( X \ A ) ) ) |
| 8 |
4
|
fveq1i |
|- ( I ` A ) = ( ( int ` J ) ` A ) |
| 9 |
3
|
fveq1i |
|- ( K ` ( X \ A ) ) = ( ( cls ` J ) ` ( X \ A ) ) |
| 10 |
9
|
difeq2i |
|- ( X \ ( K ` ( X \ A ) ) ) = ( X \ ( ( cls ` J ) ` ( X \ A ) ) ) |
| 11 |
7 8 10
|
3eqtr4i |
|- ( I ` A ) = ( X \ ( K ` ( X \ A ) ) ) |