Metamath Proof Explorer


Theorem kur14lem2

Description: Lemma for kur14 . Write interior in terms of closure and complement: i A = c k c A where c is complement and k is closure. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j
|- J e. Top
kur14lem.x
|- X = U. J
kur14lem.k
|- K = ( cls ` J )
kur14lem.i
|- I = ( int ` J )
kur14lem.a
|- A C_ X
Assertion kur14lem2
|- ( I ` A ) = ( X \ ( K ` ( X \ A ) ) )

Proof

Step Hyp Ref Expression
1 kur14lem.j
 |-  J e. Top
2 kur14lem.x
 |-  X = U. J
3 kur14lem.k
 |-  K = ( cls ` J )
4 kur14lem.i
 |-  I = ( int ` J )
5 kur14lem.a
 |-  A C_ X
6 2 ntrval2
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) = ( X \ ( ( cls ` J ) ` ( X \ A ) ) ) )
7 1 5 6 mp2an
 |-  ( ( int ` J ) ` A ) = ( X \ ( ( cls ` J ) ` ( X \ A ) ) )
8 4 fveq1i
 |-  ( I ` A ) = ( ( int ` J ) ` A )
9 3 fveq1i
 |-  ( K ` ( X \ A ) ) = ( ( cls ` J ) ` ( X \ A ) )
10 9 difeq2i
 |-  ( X \ ( K ` ( X \ A ) ) ) = ( X \ ( ( cls ` J ) ` ( X \ A ) ) )
11 7 8 10 3eqtr4i
 |-  ( I ` A ) = ( X \ ( K ` ( X \ A ) ) )