Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem.j |
⊢ 𝐽 ∈ Top |
2 |
|
kur14lem.x |
⊢ 𝑋 = ∪ 𝐽 |
3 |
|
kur14lem.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
4 |
|
kur14lem.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
5 |
|
kur14lem.a |
⊢ 𝐴 ⊆ 𝑋 |
6 |
2
|
ntrval2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ) ) |
7 |
1 5 6
|
mp2an |
⊢ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ) |
8 |
4
|
fveq1i |
⊢ ( 𝐼 ‘ 𝐴 ) = ( ( int ‘ 𝐽 ) ‘ 𝐴 ) |
9 |
3
|
fveq1i |
⊢ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) |
10 |
9
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ) |
11 |
7 8 10
|
3eqtr4i |
⊢ ( 𝐼 ‘ 𝐴 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) |