Metamath Proof Explorer


Theorem kur14lem2

Description: Lemma for kur14 . Write interior in terms of closure and complement: i A = c k c A where c is complement and k is closure. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
kur14lem.i 𝐼 = ( int ‘ 𝐽 )
kur14lem.a 𝐴𝑋
Assertion kur14lem2 ( 𝐼𝐴 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 kur14lem.j 𝐽 ∈ Top
2 kur14lem.x 𝑋 = 𝐽
3 kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
4 kur14lem.i 𝐼 = ( int ‘ 𝐽 )
5 kur14lem.a 𝐴𝑋
6 2 ntrval2 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) ) )
7 1 5 6 mp2an ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) )
8 4 fveq1i ( 𝐼𝐴 ) = ( ( int ‘ 𝐽 ) ‘ 𝐴 )
9 3 fveq1i ( 𝐾 ‘ ( 𝑋𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) )
10 9 difeq2i ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋𝐴 ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) )
11 7 8 10 3eqtr4i ( 𝐼𝐴 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋𝐴 ) ) )