Description: Lemma for kur14 . A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kur14lem.j | ⊢ 𝐽 ∈ Top | |
| kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 | ||
| kur14lem.k | ⊢ 𝐾 = ( cls ‘ 𝐽 ) | ||
| kur14lem.i | ⊢ 𝐼 = ( int ‘ 𝐽 ) | ||
| kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 | ||
| Assertion | kur14lem3 | ⊢ ( 𝐾 ‘ 𝐴 ) ⊆ 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.j | ⊢ 𝐽 ∈ Top | |
| 2 | kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | kur14lem.k | ⊢ 𝐾 = ( cls ‘ 𝐽 ) | |
| 4 | kur14lem.i | ⊢ 𝐼 = ( int ‘ 𝐽 ) | |
| 5 | kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 | |
| 6 | 3 | fveq1i | ⊢ ( 𝐾 ‘ 𝐴 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) |
| 7 | 2 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ) |
| 8 | 1 5 7 | mp2an | ⊢ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 |
| 9 | 6 8 | eqsstri | ⊢ ( 𝐾 ‘ 𝐴 ) ⊆ 𝑋 |