Metamath Proof Explorer


Theorem kur14lem3

Description: Lemma for kur14 . A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
kur14lem.i 𝐼 = ( int ‘ 𝐽 )
kur14lem.a 𝐴𝑋
Assertion kur14lem3 ( 𝐾𝐴 ) ⊆ 𝑋

Proof

Step Hyp Ref Expression
1 kur14lem.j 𝐽 ∈ Top
2 kur14lem.x 𝑋 = 𝐽
3 kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
4 kur14lem.i 𝐼 = ( int ‘ 𝐽 )
5 kur14lem.a 𝐴𝑋
6 3 fveq1i ( 𝐾𝐴 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 )
7 2 clsss3 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 )
8 1 5 7 mp2an ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋
9 6 8 eqsstri ( 𝐾𝐴 ) ⊆ 𝑋