Metamath Proof Explorer
Description: Lemma for kur14 . Complementation is an involution on the set of
subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)
|
|
Ref |
Expression |
|
Hypotheses |
kur14lem.j |
⊢ 𝐽 ∈ Top |
|
|
kur14lem.x |
⊢ 𝑋 = ∪ 𝐽 |
|
|
kur14lem.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
|
|
kur14lem.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
|
|
kur14lem.a |
⊢ 𝐴 ⊆ 𝑋 |
|
Assertion |
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kur14lem.j |
⊢ 𝐽 ∈ Top |
| 2 |
|
kur14lem.x |
⊢ 𝑋 = ∪ 𝐽 |
| 3 |
|
kur14lem.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
| 4 |
|
kur14lem.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
| 5 |
|
kur14lem.a |
⊢ 𝐴 ⊆ 𝑋 |
| 6 |
|
dfss4 |
⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) |
| 7 |
5 6
|
mpbi |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 |