Metamath Proof Explorer


Theorem kur14lem4

Description: Lemma for kur14 . Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
kur14lem.i 𝐼 = ( int ‘ 𝐽 )
kur14lem.a 𝐴𝑋
Assertion kur14lem4 ( 𝑋 ∖ ( 𝑋𝐴 ) ) = 𝐴

Proof

Step Hyp Ref Expression
1 kur14lem.j 𝐽 ∈ Top
2 kur14lem.x 𝑋 = 𝐽
3 kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
4 kur14lem.i 𝐼 = ( int ‘ 𝐽 )
5 kur14lem.a 𝐴𝑋
6 dfss4 ( 𝐴𝑋 ↔ ( 𝑋 ∖ ( 𝑋𝐴 ) ) = 𝐴 )
7 5 6 mpbi ( 𝑋 ∖ ( 𝑋𝐴 ) ) = 𝐴