Description: Lemma for kur14 . Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kur14lem.j | |- J e. Top |
|
| kur14lem.x | |- X = U. J |
||
| kur14lem.k | |- K = ( cls ` J ) |
||
| kur14lem.i | |- I = ( int ` J ) |
||
| kur14lem.a | |- A C_ X |
||
| Assertion | kur14lem4 | |- ( X \ ( X \ A ) ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.j | |- J e. Top |
|
| 2 | kur14lem.x | |- X = U. J |
|
| 3 | kur14lem.k | |- K = ( cls ` J ) |
|
| 4 | kur14lem.i | |- I = ( int ` J ) |
|
| 5 | kur14lem.a | |- A C_ X |
|
| 6 | dfss4 | |- ( A C_ X <-> ( X \ ( X \ A ) ) = A ) |
|
| 7 | 5 6 | mpbi | |- ( X \ ( X \ A ) ) = A |