Description: Lemma for kur14 . Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kur14lem.j | |- J e. Top |
|
kur14lem.x | |- X = U. J |
||
kur14lem.k | |- K = ( cls ` J ) |
||
kur14lem.i | |- I = ( int ` J ) |
||
kur14lem.a | |- A C_ X |
||
Assertion | kur14lem4 | |- ( X \ ( X \ A ) ) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | |- J e. Top |
|
2 | kur14lem.x | |- X = U. J |
|
3 | kur14lem.k | |- K = ( cls ` J ) |
|
4 | kur14lem.i | |- I = ( int ` J ) |
|
5 | kur14lem.a | |- A C_ X |
|
6 | dfss4 | |- ( A C_ X <-> ( X \ ( X \ A ) ) = A ) |
|
7 | 5 6 | mpbi | |- ( X \ ( X \ A ) ) = A |