Metamath Proof Explorer


Theorem kur14lem4

Description: Lemma for kur14 . Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j
|- J e. Top
kur14lem.x
|- X = U. J
kur14lem.k
|- K = ( cls ` J )
kur14lem.i
|- I = ( int ` J )
kur14lem.a
|- A C_ X
Assertion kur14lem4
|- ( X \ ( X \ A ) ) = A

Proof

Step Hyp Ref Expression
1 kur14lem.j
 |-  J e. Top
2 kur14lem.x
 |-  X = U. J
3 kur14lem.k
 |-  K = ( cls ` J )
4 kur14lem.i
 |-  I = ( int ` J )
5 kur14lem.a
 |-  A C_ X
6 dfss4
 |-  ( A C_ X <-> ( X \ ( X \ A ) ) = A )
7 5 6 mpbi
 |-  ( X \ ( X \ A ) ) = A