Description: Lemma for kur14 . Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kur14lem.j | |- J e. Top |
|
kur14lem.x | |- X = U. J |
||
kur14lem.k | |- K = ( cls ` J ) |
||
kur14lem.i | |- I = ( int ` J ) |
||
kur14lem.a | |- A C_ X |
||
Assertion | kur14lem5 | |- ( K ` ( K ` A ) ) = ( K ` A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | |- J e. Top |
|
2 | kur14lem.x | |- X = U. J |
|
3 | kur14lem.k | |- K = ( cls ` J ) |
|
4 | kur14lem.i | |- I = ( int ` J ) |
|
5 | kur14lem.a | |- A C_ X |
|
6 | 2 | clsidm | |- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` A ) ) = ( ( cls ` J ) ` A ) ) |
7 | 1 5 6 | mp2an | |- ( ( cls ` J ) ` ( ( cls ` J ) ` A ) ) = ( ( cls ` J ) ` A ) |
8 | 3 | fveq1i | |- ( K ` A ) = ( ( cls ` J ) ` A ) |
9 | 3 8 | fveq12i | |- ( K ` ( K ` A ) ) = ( ( cls ` J ) ` ( ( cls ` J ) ` A ) ) |
10 | 7 9 8 | 3eqtr4i | |- ( K ` ( K ` A ) ) = ( K ` A ) |