Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem.j |
|- J e. Top |
2 |
|
kur14lem.x |
|- X = U. J |
3 |
|
kur14lem.k |
|- K = ( cls ` J ) |
4 |
|
kur14lem.i |
|- I = ( int ` J ) |
5 |
|
kur14lem.a |
|- A C_ X |
6 |
|
kur14lem.b |
|- B = ( X \ ( K ` A ) ) |
7 |
|
difss |
|- ( X \ ( K ` A ) ) C_ X |
8 |
6 7
|
eqsstri |
|- B C_ X |
9 |
1 2 3 4 8
|
kur14lem3 |
|- ( K ` B ) C_ X |
10 |
4
|
fveq1i |
|- ( I ` ( K ` B ) ) = ( ( int ` J ) ` ( K ` B ) ) |
11 |
2
|
ntrss2 |
|- ( ( J e. Top /\ ( K ` B ) C_ X ) -> ( ( int ` J ) ` ( K ` B ) ) C_ ( K ` B ) ) |
12 |
1 9 11
|
mp2an |
|- ( ( int ` J ) ` ( K ` B ) ) C_ ( K ` B ) |
13 |
10 12
|
eqsstri |
|- ( I ` ( K ` B ) ) C_ ( K ` B ) |
14 |
2
|
clsss |
|- ( ( J e. Top /\ ( K ` B ) C_ X /\ ( I ` ( K ` B ) ) C_ ( K ` B ) ) -> ( ( cls ` J ) ` ( I ` ( K ` B ) ) ) C_ ( ( cls ` J ) ` ( K ` B ) ) ) |
15 |
1 9 13 14
|
mp3an |
|- ( ( cls ` J ) ` ( I ` ( K ` B ) ) ) C_ ( ( cls ` J ) ` ( K ` B ) ) |
16 |
3
|
fveq1i |
|- ( K ` ( I ` ( K ` B ) ) ) = ( ( cls ` J ) ` ( I ` ( K ` B ) ) ) |
17 |
3
|
fveq1i |
|- ( K ` ( K ` B ) ) = ( ( cls ` J ) ` ( K ` B ) ) |
18 |
15 16 17
|
3sstr4i |
|- ( K ` ( I ` ( K ` B ) ) ) C_ ( K ` ( K ` B ) ) |
19 |
1 2 3 4 8
|
kur14lem5 |
|- ( K ` ( K ` B ) ) = ( K ` B ) |
20 |
18 19
|
sseqtri |
|- ( K ` ( I ` ( K ` B ) ) ) C_ ( K ` B ) |
21 |
1 2 3 4 9
|
kur14lem2 |
|- ( I ` ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` B ) ) ) ) |
22 |
|
difss |
|- ( X \ ( K ` ( X \ ( K ` B ) ) ) ) C_ X |
23 |
21 22
|
eqsstri |
|- ( I ` ( K ` B ) ) C_ X |
24 |
1 2 3 4 5
|
kur14lem3 |
|- ( K ` A ) C_ X |
25 |
6
|
fveq2i |
|- ( K ` B ) = ( K ` ( X \ ( K ` A ) ) ) |
26 |
25
|
difeq2i |
|- ( X \ ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) |
27 |
1 2 3 4 24
|
kur14lem2 |
|- ( I ` ( K ` A ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) |
28 |
4
|
fveq1i |
|- ( I ` ( K ` A ) ) = ( ( int ` J ) ` ( K ` A ) ) |
29 |
26 27 28
|
3eqtr2i |
|- ( X \ ( K ` B ) ) = ( ( int ` J ) ` ( K ` A ) ) |
30 |
2
|
ntrss2 |
|- ( ( J e. Top /\ ( K ` A ) C_ X ) -> ( ( int ` J ) ` ( K ` A ) ) C_ ( K ` A ) ) |
31 |
1 24 30
|
mp2an |
|- ( ( int ` J ) ` ( K ` A ) ) C_ ( K ` A ) |
32 |
29 31
|
eqsstri |
|- ( X \ ( K ` B ) ) C_ ( K ` A ) |
33 |
2
|
clsss |
|- ( ( J e. Top /\ ( K ` A ) C_ X /\ ( X \ ( K ` B ) ) C_ ( K ` A ) ) -> ( ( cls ` J ) ` ( X \ ( K ` B ) ) ) C_ ( ( cls ` J ) ` ( K ` A ) ) ) |
34 |
1 24 32 33
|
mp3an |
|- ( ( cls ` J ) ` ( X \ ( K ` B ) ) ) C_ ( ( cls ` J ) ` ( K ` A ) ) |
35 |
3
|
fveq1i |
|- ( K ` ( X \ ( K ` B ) ) ) = ( ( cls ` J ) ` ( X \ ( K ` B ) ) ) |
36 |
1 2 3 4 5
|
kur14lem5 |
|- ( K ` ( K ` A ) ) = ( K ` A ) |
37 |
3
|
fveq1i |
|- ( K ` ( K ` A ) ) = ( ( cls ` J ) ` ( K ` A ) ) |
38 |
36 37
|
eqtr3i |
|- ( K ` A ) = ( ( cls ` J ) ` ( K ` A ) ) |
39 |
34 35 38
|
3sstr4i |
|- ( K ` ( X \ ( K ` B ) ) ) C_ ( K ` A ) |
40 |
|
sscon |
|- ( ( K ` ( X \ ( K ` B ) ) ) C_ ( K ` A ) -> ( X \ ( K ` A ) ) C_ ( X \ ( K ` ( X \ ( K ` B ) ) ) ) ) |
41 |
39 40
|
ax-mp |
|- ( X \ ( K ` A ) ) C_ ( X \ ( K ` ( X \ ( K ` B ) ) ) ) |
42 |
41 6 21
|
3sstr4i |
|- B C_ ( I ` ( K ` B ) ) |
43 |
2
|
clsss |
|- ( ( J e. Top /\ ( I ` ( K ` B ) ) C_ X /\ B C_ ( I ` ( K ` B ) ) ) -> ( ( cls ` J ) ` B ) C_ ( ( cls ` J ) ` ( I ` ( K ` B ) ) ) ) |
44 |
1 23 42 43
|
mp3an |
|- ( ( cls ` J ) ` B ) C_ ( ( cls ` J ) ` ( I ` ( K ` B ) ) ) |
45 |
3
|
fveq1i |
|- ( K ` B ) = ( ( cls ` J ) ` B ) |
46 |
44 45 16
|
3sstr4i |
|- ( K ` B ) C_ ( K ` ( I ` ( K ` B ) ) ) |
47 |
20 46
|
eqssi |
|- ( K ` ( I ` ( K ` B ) ) ) = ( K ` B ) |