Description: Lemma for kur14 . If k is the complementation operator and k is the closure operator, this expresses the identity k c k A = k c k c k c k A for any subset A of the topological space. This is the key result that lets us cut down long enough sequences of c k c k ... that arise when applying closure and complement repeatedly to A , and explains why we end up with a number as large as 1 4 , yet no larger. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kur14lem.j | |
|
kur14lem.x | |
||
kur14lem.k | |
||
kur14lem.i | |
||
kur14lem.a | |
||
kur14lem.b | |
||
Assertion | kur14lem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | |
|
2 | kur14lem.x | |
|
3 | kur14lem.k | |
|
4 | kur14lem.i | |
|
5 | kur14lem.a | |
|
6 | kur14lem.b | |
|
7 | difss | |
|
8 | 6 7 | eqsstri | |
9 | 1 2 3 4 8 | kur14lem3 | |
10 | 4 | fveq1i | |
11 | 2 | ntrss2 | |
12 | 1 9 11 | mp2an | |
13 | 10 12 | eqsstri | |
14 | 2 | clsss | |
15 | 1 9 13 14 | mp3an | |
16 | 3 | fveq1i | |
17 | 3 | fveq1i | |
18 | 15 16 17 | 3sstr4i | |
19 | 1 2 3 4 8 | kur14lem5 | |
20 | 18 19 | sseqtri | |
21 | 1 2 3 4 9 | kur14lem2 | |
22 | difss | |
|
23 | 21 22 | eqsstri | |
24 | 1 2 3 4 5 | kur14lem3 | |
25 | 6 | fveq2i | |
26 | 25 | difeq2i | |
27 | 1 2 3 4 24 | kur14lem2 | |
28 | 4 | fveq1i | |
29 | 26 27 28 | 3eqtr2i | |
30 | 2 | ntrss2 | |
31 | 1 24 30 | mp2an | |
32 | 29 31 | eqsstri | |
33 | 2 | clsss | |
34 | 1 24 32 33 | mp3an | |
35 | 3 | fveq1i | |
36 | 1 2 3 4 5 | kur14lem5 | |
37 | 3 | fveq1i | |
38 | 36 37 | eqtr3i | |
39 | 34 35 38 | 3sstr4i | |
40 | sscon | |
|
41 | 39 40 | ax-mp | |
42 | 41 6 21 | 3sstr4i | |
43 | 2 | clsss | |
44 | 1 23 42 43 | mp3an | |
45 | 3 | fveq1i | |
46 | 44 45 16 | 3sstr4i | |
47 | 20 46 | eqssi | |