Metamath Proof Explorer


Theorem kur14lem6

Description: Lemma for kur14 . If k is the complementation operator and k is the closure operator, this expresses the identity k c k A = k c k c k c k A for any subset A of the topological space. This is the key result that lets us cut down long enough sequences of c k c k ... that arise when applying closure and complement repeatedly to A , and explains why we end up with a number as large as 1 4 , yet no larger. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j JTop
kur14lem.x X=J
kur14lem.k K=clsJ
kur14lem.i I=intJ
kur14lem.a AX
kur14lem.b B=XKA
Assertion kur14lem6 KIKB=KB

Proof

Step Hyp Ref Expression
1 kur14lem.j JTop
2 kur14lem.x X=J
3 kur14lem.k K=clsJ
4 kur14lem.i I=intJ
5 kur14lem.a AX
6 kur14lem.b B=XKA
7 difss XKAX
8 6 7 eqsstri BX
9 1 2 3 4 8 kur14lem3 KBX
10 4 fveq1i IKB=intJKB
11 2 ntrss2 JTopKBXintJKBKB
12 1 9 11 mp2an intJKBKB
13 10 12 eqsstri IKBKB
14 2 clsss JTopKBXIKBKBclsJIKBclsJKB
15 1 9 13 14 mp3an clsJIKBclsJKB
16 3 fveq1i KIKB=clsJIKB
17 3 fveq1i KKB=clsJKB
18 15 16 17 3sstr4i KIKBKKB
19 1 2 3 4 8 kur14lem5 KKB=KB
20 18 19 sseqtri KIKBKB
21 1 2 3 4 9 kur14lem2 IKB=XKXKB
22 difss XKXKBX
23 21 22 eqsstri IKBX
24 1 2 3 4 5 kur14lem3 KAX
25 6 fveq2i KB=KXKA
26 25 difeq2i XKB=XKXKA
27 1 2 3 4 24 kur14lem2 IKA=XKXKA
28 4 fveq1i IKA=intJKA
29 26 27 28 3eqtr2i XKB=intJKA
30 2 ntrss2 JTopKAXintJKAKA
31 1 24 30 mp2an intJKAKA
32 29 31 eqsstri XKBKA
33 2 clsss JTopKAXXKBKAclsJXKBclsJKA
34 1 24 32 33 mp3an clsJXKBclsJKA
35 3 fveq1i KXKB=clsJXKB
36 1 2 3 4 5 kur14lem5 KKA=KA
37 3 fveq1i KKA=clsJKA
38 36 37 eqtr3i KA=clsJKA
39 34 35 38 3sstr4i KXKBKA
40 sscon KXKBKAXKAXKXKB
41 39 40 ax-mp XKAXKXKB
42 41 6 21 3sstr4i BIKB
43 2 clsss JTopIKBXBIKBclsJBclsJIKB
44 1 23 42 43 mp3an clsJBclsJIKB
45 3 fveq1i KB=clsJB
46 44 45 16 3sstr4i KBKIKB
47 20 46 eqssi KIKB=KB