| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kur14.x |
|
| 2 |
|
kur14.k |
|
| 3 |
|
kur14.s |
|
| 4 |
|
eleq1 |
|
| 5 |
4
|
anbi1d |
|
| 6 |
5
|
rabbidv |
|
| 7 |
6
|
inteqd |
|
| 8 |
3 7
|
eqtrid |
|
| 9 |
8
|
eleq1d |
|
| 10 |
8
|
fveq2d |
|
| 11 |
10
|
breq1d |
|
| 12 |
9 11
|
anbi12d |
|
| 13 |
|
unieq |
|
| 14 |
1 13
|
eqtrid |
|
| 15 |
14
|
pweqd |
|
| 16 |
15
|
pweqd |
|
| 17 |
14
|
sseq2d |
|
| 18 |
|
sn0top |
|
| 19 |
18
|
elimel |
|
| 20 |
|
uniexg |
|
| 21 |
19 20
|
ax-mp |
|
| 22 |
21
|
elpw2 |
|
| 23 |
17 22
|
bitr4di |
|
| 24 |
23
|
ifbid |
|
| 25 |
24
|
eleq1d |
|
| 26 |
14
|
difeq1d |
|
| 27 |
|
fveq2 |
|
| 28 |
2 27
|
eqtrid |
|
| 29 |
28
|
fveq1d |
|
| 30 |
26 29
|
preq12d |
|
| 31 |
30
|
sseq1d |
|
| 32 |
31
|
ralbidv |
|
| 33 |
25 32
|
anbi12d |
|
| 34 |
16 33
|
rabeqbidv |
|
| 35 |
34
|
inteqd |
|
| 36 |
35
|
eleq1d |
|
| 37 |
35
|
fveq2d |
|
| 38 |
37
|
breq1d |
|
| 39 |
36 38
|
anbi12d |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
|
0elpw |
|
| 44 |
43
|
elimel |
|
| 45 |
|
elpwi |
|
| 46 |
44 45
|
ax-mp |
|
| 47 |
19 40 41 42 46
|
kur14lem10 |
|
| 48 |
12 39 47
|
dedth2h |
|
| 49 |
48
|
ancoms |
|