Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
The Kuratowski closure-complement theorem
kur14lem10
Next ⟩
kur14
Metamath Proof Explorer
Ascii
Unicode
Theorem
kur14lem10
Description:
Lemma for
kur14
. Discharge the set
T
.
(Contributed by
Mario Carneiro
, 11-Feb-2015)
Ref
Expression
Hypotheses
kur14lem10.j
⊢
J
∈
Top
kur14lem10.x
⊢
X
=
⋃
J
kur14lem10.k
⊢
K
=
cls
⁡
J
kur14lem10.s
⊢
S
=
⋂
x
∈
𝒫
𝒫
X
|
A
∈
x
∧
∀
y
∈
x
X
∖
y
K
⁡
y
⊆
x
kur14lem10.a
⊢
A
⊆
X
Assertion
kur14lem10
⊢
S
∈
Fin
∧
S
≤
14
Proof
Step
Hyp
Ref
Expression
1
kur14lem10.j
⊢
J
∈
Top
2
kur14lem10.x
⊢
X
=
⋃
J
3
kur14lem10.k
⊢
K
=
cls
⁡
J
4
kur14lem10.s
⊢
S
=
⋂
x
∈
𝒫
𝒫
X
|
A
∈
x
∧
∀
y
∈
x
X
∖
y
K
⁡
y
⊆
x
5
kur14lem10.a
⊢
A
⊆
X
6
eqid
⊢
int
⁡
J
=
int
⁡
J
7
eqid
⊢
X
∖
K
⁡
A
=
X
∖
K
⁡
A
8
eqid
⊢
K
⁡
X
∖
A
=
K
⁡
X
∖
A
9
eqid
⊢
int
⁡
J
⁡
K
⁡
A
=
int
⁡
J
⁡
K
⁡
A
10
eqid
⊢
A
X
∖
A
K
⁡
A
∪
X
∖
K
⁡
A
K
⁡
X
∖
A
int
⁡
J
⁡
A
∪
K
⁡
X
∖
K
⁡
A
int
⁡
J
⁡
K
⁡
A
K
⁡
int
⁡
J
⁡
A
∪
int
⁡
J
⁡
K
⁡
X
∖
A
K
⁡
int
⁡
J
⁡
K
⁡
A
int
⁡
J
⁡
K
⁡
X
∖
K
⁡
A
∪
K
⁡
int
⁡
J
⁡
K
⁡
X
∖
A
int
⁡
J
⁡
K
⁡
int
⁡
J
⁡
A
=
A
X
∖
A
K
⁡
A
∪
X
∖
K
⁡
A
K
⁡
X
∖
A
int
⁡
J
⁡
A
∪
K
⁡
X
∖
K
⁡
A
int
⁡
J
⁡
K
⁡
A
K
⁡
int
⁡
J
⁡
A
∪
int
⁡
J
⁡
K
⁡
X
∖
A
K
⁡
int
⁡
J
⁡
K
⁡
A
int
⁡
J
⁡
K
⁡
X
∖
K
⁡
A
∪
K
⁡
int
⁡
J
⁡
K
⁡
X
∖
A
int
⁡
J
⁡
K
⁡
int
⁡
J
⁡
A
11
1
2
3
6
5
7
8
9
10
4
kur14lem9
⊢
S
∈
Fin
∧
S
≤
14