Metamath Proof Explorer


Theorem kur14lem10

Description: Lemma for kur14 . Discharge the set T . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem10.j J Top
kur14lem10.x X = J
kur14lem10.k K = cls J
kur14lem10.s S = x 𝒫 𝒫 X | A x y x X y K y x
kur14lem10.a A X
Assertion kur14lem10 S Fin S 14

Proof

Step Hyp Ref Expression
1 kur14lem10.j J Top
2 kur14lem10.x X = J
3 kur14lem10.k K = cls J
4 kur14lem10.s S = x 𝒫 𝒫 X | A x y x X y K y x
5 kur14lem10.a A X
6 eqid int J = int J
7 eqid X K A = X K A
8 eqid K X A = K X A
9 eqid int J K A = int J K A
10 eqid A X A K A X K A K X A int J A K X K A int J K A K int J A int J K X A K int J K A int J K X K A K int J K X A int J K int J A = A X A K A X K A K X A int J A K X K A int J K A K int J A int J K X A K int J K A int J K X K A K int J K X A int J K int J A
11 1 2 3 6 5 7 8 9 10 4 kur14lem9 S Fin S 14