Metamath Proof Explorer


Theorem kur14lem10

Description: Lemma for kur14 . Discharge the set T . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem10.j JTop
kur14lem10.x X=J
kur14lem10.k K=clsJ
kur14lem10.s S=x𝒫𝒫X|AxyxXyKyx
kur14lem10.a AX
Assertion kur14lem10 SFinS14

Proof

Step Hyp Ref Expression
1 kur14lem10.j JTop
2 kur14lem10.x X=J
3 kur14lem10.k K=clsJ
4 kur14lem10.s S=x𝒫𝒫X|AxyxXyKyx
5 kur14lem10.a AX
6 eqid intJ=intJ
7 eqid XKA=XKA
8 eqid KXA=KXA
9 eqid intJKA=intJKA
10 eqid AXAKAXKAKXAintJAKXKAintJKAKintJAintJKXAKintJKAintJKXKAKintJKXAintJKintJA=AXAKAXKAKXAintJAKXKAintJKAKintJAintJKXAKintJKAintJKXKAKintJKXAintJKintJA
11 1 2 3 6 5 7 8 9 10 4 kur14lem9 SFinS14