Description: Lemma for kur14 . Discharge the set T . (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kur14lem10.j | |- J e. Top |
|
| kur14lem10.x | |- X = U. J |
||
| kur14lem10.k | |- K = ( cls ` J ) |
||
| kur14lem10.s | |- S = |^| { x e. ~P ~P X | ( A e. x /\ A. y e. x { ( X \ y ) , ( K ` y ) } C_ x ) } |
||
| kur14lem10.a | |- A C_ X |
||
| Assertion | kur14lem10 | |- ( S e. Fin /\ ( # ` S ) <_ ; 1 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem10.j | |- J e. Top |
|
| 2 | kur14lem10.x | |- X = U. J |
|
| 3 | kur14lem10.k | |- K = ( cls ` J ) |
|
| 4 | kur14lem10.s | |- S = |^| { x e. ~P ~P X | ( A e. x /\ A. y e. x { ( X \ y ) , ( K ` y ) } C_ x ) } |
|
| 5 | kur14lem10.a | |- A C_ X |
|
| 6 | eqid | |- ( int ` J ) = ( int ` J ) |
|
| 7 | eqid | |- ( X \ ( K ` A ) ) = ( X \ ( K ` A ) ) |
|
| 8 | eqid | |- ( K ` ( X \ A ) ) = ( K ` ( X \ A ) ) |
|
| 9 | eqid | |- ( ( int ` J ) ` ( K ` A ) ) = ( ( int ` J ) ` ( K ` A ) ) |
|
| 10 | eqid | |- ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { ( X \ ( K ` A ) ) , ( K ` ( X \ A ) ) , ( ( int ` J ) ` A ) } ) u. { ( K ` ( X \ ( K ` A ) ) ) , ( ( int ` J ) ` ( K ` A ) ) , ( K ` ( ( int ` J ) ` A ) ) } ) u. ( { ( ( int ` J ) ` ( K ` ( X \ A ) ) ) , ( K ` ( ( int ` J ) ` ( K ` A ) ) ) , ( ( int ` J ) ` ( K ` ( X \ ( K ` A ) ) ) ) } u. { ( K ` ( ( int ` J ) ` ( K ` ( X \ A ) ) ) ) , ( ( int ` J ) ` ( K ` ( ( int ` J ) ` A ) ) ) } ) ) = ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { ( X \ ( K ` A ) ) , ( K ` ( X \ A ) ) , ( ( int ` J ) ` A ) } ) u. { ( K ` ( X \ ( K ` A ) ) ) , ( ( int ` J ) ` ( K ` A ) ) , ( K ` ( ( int ` J ) ` A ) ) } ) u. ( { ( ( int ` J ) ` ( K ` ( X \ A ) ) ) , ( K ` ( ( int ` J ) ` ( K ` A ) ) ) , ( ( int ` J ) ` ( K ` ( X \ ( K ` A ) ) ) ) } u. { ( K ` ( ( int ` J ) ` ( K ` ( X \ A ) ) ) ) , ( ( int ` J ) ` ( K ` ( ( int ` J ) ` A ) ) ) } ) ) |
|
| 11 | 1 2 3 6 5 7 8 9 10 4 | kur14lem9 | |- ( S e. Fin /\ ( # ` S ) <_ ; 1 4 ) |