Description: Lemma for kur14 . Discharge the set T . (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kur14lem10.j | ⊢ 𝐽 ∈ Top | |
kur14lem10.x | ⊢ 𝑋 = ∪ 𝐽 | ||
kur14lem10.k | ⊢ 𝐾 = ( cls ‘ 𝐽 ) | ||
kur14lem10.s | ⊢ 𝑆 = ∩ { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) } | ||
kur14lem10.a | ⊢ 𝐴 ⊆ 𝑋 | ||
Assertion | kur14lem10 | ⊢ ( 𝑆 ∈ Fin ∧ ( ♯ ‘ 𝑆 ) ≤ ; 1 4 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem10.j | ⊢ 𝐽 ∈ Top | |
2 | kur14lem10.x | ⊢ 𝑋 = ∪ 𝐽 | |
3 | kur14lem10.k | ⊢ 𝐾 = ( cls ‘ 𝐽 ) | |
4 | kur14lem10.s | ⊢ 𝑆 = ∩ { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) } | |
5 | kur14lem10.a | ⊢ 𝐴 ⊆ 𝑋 | |
6 | eqid | ⊢ ( int ‘ 𝐽 ) = ( int ‘ 𝐽 ) | |
7 | eqid | ⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) | |
8 | eqid | ⊢ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) | |
9 | eqid | ⊢ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) | |
10 | eqid | ⊢ ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) , ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) , ( ( int ‘ 𝐽 ) ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) } ) ∪ ( { ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) } ∪ { ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) } ) ) = ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) , ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) , ( ( int ‘ 𝐽 ) ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) } ) ∪ ( { ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) } ∪ { ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) } ) ) | |
11 | 1 2 3 6 5 7 8 9 10 4 | kur14lem9 | ⊢ ( 𝑆 ∈ Fin ∧ ( ♯ ‘ 𝑆 ) ≤ ; 1 4 ) |