Metamath Proof Explorer


Theorem kur14lem10

Description: Lemma for kur14 . Discharge the set T . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem10.j 𝐽 ∈ Top
kur14lem10.x 𝑋 = 𝐽
kur14lem10.k 𝐾 = ( cls ‘ 𝐽 )
kur14lem10.s 𝑆 = { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) }
kur14lem10.a 𝐴𝑋
Assertion kur14lem10 ( 𝑆 ∈ Fin ∧ ( ♯ ‘ 𝑆 ) ≤ 1 4 )

Proof

Step Hyp Ref Expression
1 kur14lem10.j 𝐽 ∈ Top
2 kur14lem10.x 𝑋 = 𝐽
3 kur14lem10.k 𝐾 = ( cls ‘ 𝐽 )
4 kur14lem10.s 𝑆 = { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) }
5 kur14lem10.a 𝐴𝑋
6 eqid ( int ‘ 𝐽 ) = ( int ‘ 𝐽 )
7 eqid ( 𝑋 ∖ ( 𝐾𝐴 ) ) = ( 𝑋 ∖ ( 𝐾𝐴 ) )
8 eqid ( 𝐾 ‘ ( 𝑋𝐴 ) ) = ( 𝐾 ‘ ( 𝑋𝐴 ) )
9 eqid ( ( int ‘ 𝐽 ) ‘ ( 𝐾𝐴 ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐾𝐴 ) )
10 eqid ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { ( 𝑋 ∖ ( 𝐾𝐴 ) ) , ( 𝐾 ‘ ( 𝑋𝐴 ) ) , ( ( int ‘ 𝐽 ) ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾𝐴 ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) } ) ∪ ( { ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋𝐴 ) ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾𝐴 ) ) ) ) } ∪ { ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋𝐴 ) ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) } ) ) = ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { ( 𝑋 ∖ ( 𝐾𝐴 ) ) , ( 𝐾 ‘ ( 𝑋𝐴 ) ) , ( ( int ‘ 𝐽 ) ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾𝐴 ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) } ) ∪ ( { ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋𝐴 ) ) ) , ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾𝐴 ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾𝐴 ) ) ) ) } ∪ { ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( 𝑋𝐴 ) ) ) ) , ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) } ) )
11 1 2 3 6 5 7 8 9 10 4 kur14lem9 ( 𝑆 ∈ Fin ∧ ( ♯ ‘ 𝑆 ) ≤ 1 4 )