Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem.j |
⊢ 𝐽 ∈ Top |
2 |
|
kur14lem.x |
⊢ 𝑋 = ∪ 𝐽 |
3 |
|
kur14lem.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
4 |
|
kur14lem.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
5 |
|
kur14lem.a |
⊢ 𝐴 ⊆ 𝑋 |
6 |
|
kur14lem.b |
⊢ 𝐵 = ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) |
7 |
|
kur14lem.c |
⊢ 𝐶 = ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) |
8 |
|
kur14lem.d |
⊢ 𝐷 = ( 𝐼 ‘ ( 𝐾 ‘ 𝐴 ) ) |
9 |
|
kur14lem.t |
⊢ 𝑇 = ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∪ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) |
10 |
|
kur14lem.s |
⊢ 𝑆 = ∩ { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) } |
11 |
|
vex |
⊢ 𝑠 ∈ V |
12 |
11
|
elintrab |
⊢ ( 𝑠 ∈ ∩ { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) } ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) → 𝑠 ∈ 𝑥 ) ) |
13 |
|
ssun1 |
⊢ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ⊆ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) |
14 |
|
ssun1 |
⊢ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ⊆ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) |
15 |
|
ssun1 |
⊢ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ⊆ ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∪ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) |
16 |
15 9
|
sseqtrri |
⊢ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ⊆ 𝑇 |
17 |
14 16
|
sstri |
⊢ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ⊆ 𝑇 |
18 |
13 17
|
sstri |
⊢ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ⊆ 𝑇 |
19 |
2
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
20 |
1 19
|
ax-mp |
⊢ 𝑋 ∈ 𝐽 |
21 |
20
|
elexi |
⊢ 𝑋 ∈ V |
22 |
21 5
|
ssexi |
⊢ 𝐴 ∈ V |
23 |
22
|
tpid1 |
⊢ 𝐴 ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } |
24 |
18 23
|
sselii |
⊢ 𝐴 ∈ 𝑇 |
25 |
1 2 3 4 5 6 7 8 9
|
kur14lem7 |
⊢ ( 𝑦 ∈ 𝑇 → ( 𝑦 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) ) |
26 |
25
|
simprd |
⊢ ( 𝑦 ∈ 𝑇 → { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) |
27 |
26
|
rgen |
⊢ ∀ 𝑦 ∈ 𝑇 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 |
28 |
25
|
simpld |
⊢ ( 𝑦 ∈ 𝑇 → 𝑦 ⊆ 𝑋 ) |
29 |
21
|
elpw2 |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) |
30 |
28 29
|
sylibr |
⊢ ( 𝑦 ∈ 𝑇 → 𝑦 ∈ 𝒫 𝑋 ) |
31 |
30
|
ssriv |
⊢ 𝑇 ⊆ 𝒫 𝑋 |
32 |
21
|
pwex |
⊢ 𝒫 𝑋 ∈ V |
33 |
32
|
elpw2 |
⊢ ( 𝑇 ∈ 𝒫 𝒫 𝑋 ↔ 𝑇 ⊆ 𝒫 𝑋 ) |
34 |
31 33
|
mpbir |
⊢ 𝑇 ∈ 𝒫 𝒫 𝑋 |
35 |
|
eleq2 |
⊢ ( 𝑥 = 𝑇 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑇 ) ) |
36 |
|
sseq2 |
⊢ ( 𝑥 = 𝑇 → ( { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ↔ { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) ) |
37 |
36
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑇 → ( ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝑇 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) ) |
38 |
35 37
|
anbi12d |
⊢ ( 𝑥 = 𝑇 → ( ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) ↔ ( 𝐴 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) ) ) |
39 |
|
eleq2 |
⊢ ( 𝑥 = 𝑇 → ( 𝑠 ∈ 𝑥 ↔ 𝑠 ∈ 𝑇 ) ) |
40 |
38 39
|
imbi12d |
⊢ ( 𝑥 = 𝑇 → ( ( ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) → 𝑠 ∈ 𝑥 ) ↔ ( ( 𝐴 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) → 𝑠 ∈ 𝑇 ) ) ) |
41 |
40
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) → 𝑠 ∈ 𝑥 ) → ( 𝑇 ∈ 𝒫 𝒫 𝑋 → ( ( 𝐴 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) → 𝑠 ∈ 𝑇 ) ) ) |
42 |
34 41
|
mpi |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) → 𝑠 ∈ 𝑥 ) → ( ( 𝐴 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑇 ) → 𝑠 ∈ 𝑇 ) ) |
43 |
24 27 42
|
mp2ani |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) → 𝑠 ∈ 𝑥 ) → 𝑠 ∈ 𝑇 ) |
44 |
12 43
|
sylbi |
⊢ ( 𝑠 ∈ ∩ { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) } → 𝑠 ∈ 𝑇 ) |
45 |
44
|
ssriv |
⊢ ∩ { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 { ( 𝑋 ∖ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) } ⊆ 𝑥 ) } ⊆ 𝑇 |
46 |
10 45
|
eqsstri |
⊢ 𝑆 ⊆ 𝑇 |
47 |
1 2 3 4 5 6 7 8 9
|
kur14lem8 |
⊢ ( 𝑇 ∈ Fin ∧ ( ♯ ‘ 𝑇 ) ≤ ; 1 4 ) |
48 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
49 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
50 |
48 49
|
deccl |
⊢ ; 1 4 ∈ ℕ0 |
51 |
46 47 50
|
hashsslei |
⊢ ( 𝑆 ∈ Fin ∧ ( ♯ ‘ 𝑆 ) ≤ ; 1 4 ) |