Metamath Proof Explorer


Theorem kur14lem9

Description: Lemma for kur14 . Since the set T is closed under closure and complement, it contains the minimal set S as a subset, so S also has at most 1 4 elements. (Indeed S = T , and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
kur14lem.i 𝐼 = ( int ‘ 𝐽 )
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = ( 𝑋 ∖ ( 𝐾𝐴 ) )
kur14lem.c 𝐶 = ( 𝐾 ‘ ( 𝑋𝐴 ) )
kur14lem.d 𝐷 = ( 𝐼 ‘ ( 𝐾𝐴 ) )
kur14lem.t 𝑇 = ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ∪ ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) )
kur14lem.s 𝑆 = { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) }
Assertion kur14lem9 ( 𝑆 ∈ Fin ∧ ( ♯ ‘ 𝑆 ) ≤ 1 4 )

Proof

Step Hyp Ref Expression
1 kur14lem.j 𝐽 ∈ Top
2 kur14lem.x 𝑋 = 𝐽
3 kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
4 kur14lem.i 𝐼 = ( int ‘ 𝐽 )
5 kur14lem.a 𝐴𝑋
6 kur14lem.b 𝐵 = ( 𝑋 ∖ ( 𝐾𝐴 ) )
7 kur14lem.c 𝐶 = ( 𝐾 ‘ ( 𝑋𝐴 ) )
8 kur14lem.d 𝐷 = ( 𝐼 ‘ ( 𝐾𝐴 ) )
9 kur14lem.t 𝑇 = ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ∪ ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) )
10 kur14lem.s 𝑆 = { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) }
11 vex 𝑠 ∈ V
12 11 elintrab ( 𝑠 { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) } ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) → 𝑠𝑥 ) )
13 ssun1 { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ⊆ ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } )
14 ssun1 ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ⊆ ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } )
15 ssun1 ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ⊆ ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ∪ ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) )
16 15 9 sseqtrri ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ⊆ 𝑇
17 14 16 sstri ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ⊆ 𝑇
18 13 17 sstri { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ⊆ 𝑇
19 2 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
20 1 19 ax-mp 𝑋𝐽
21 20 elexi 𝑋 ∈ V
22 21 5 ssexi 𝐴 ∈ V
23 22 tpid1 𝐴 ∈ { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) }
24 18 23 sselii 𝐴𝑇
25 1 2 3 4 5 6 7 8 9 kur14lem7 ( 𝑦𝑇 → ( 𝑦𝑋 ∧ { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 ) )
26 25 simprd ( 𝑦𝑇 → { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 )
27 26 rgen 𝑦𝑇 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇
28 25 simpld ( 𝑦𝑇𝑦𝑋 )
29 21 elpw2 ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 )
30 28 29 sylibr ( 𝑦𝑇𝑦 ∈ 𝒫 𝑋 )
31 30 ssriv 𝑇 ⊆ 𝒫 𝑋
32 21 pwex 𝒫 𝑋 ∈ V
33 32 elpw2 ( 𝑇 ∈ 𝒫 𝒫 𝑋𝑇 ⊆ 𝒫 𝑋 )
34 31 33 mpbir 𝑇 ∈ 𝒫 𝒫 𝑋
35 eleq2 ( 𝑥 = 𝑇 → ( 𝐴𝑥𝐴𝑇 ) )
36 sseq2 ( 𝑥 = 𝑇 → ( { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ↔ { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 ) )
37 36 raleqbi1dv ( 𝑥 = 𝑇 → ( ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ↔ ∀ 𝑦𝑇 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 ) )
38 35 37 anbi12d ( 𝑥 = 𝑇 → ( ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) ↔ ( 𝐴𝑇 ∧ ∀ 𝑦𝑇 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 ) ) )
39 eleq2 ( 𝑥 = 𝑇 → ( 𝑠𝑥𝑠𝑇 ) )
40 38 39 imbi12d ( 𝑥 = 𝑇 → ( ( ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) → 𝑠𝑥 ) ↔ ( ( 𝐴𝑇 ∧ ∀ 𝑦𝑇 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 ) → 𝑠𝑇 ) ) )
41 40 rspccv ( ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) → 𝑠𝑥 ) → ( 𝑇 ∈ 𝒫 𝒫 𝑋 → ( ( 𝐴𝑇 ∧ ∀ 𝑦𝑇 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 ) → 𝑠𝑇 ) ) )
42 34 41 mpi ( ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) → 𝑠𝑥 ) → ( ( 𝐴𝑇 ∧ ∀ 𝑦𝑇 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑇 ) → 𝑠𝑇 ) )
43 24 27 42 mp2ani ( ∀ 𝑥 ∈ 𝒫 𝒫 𝑋 ( ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) → 𝑠𝑥 ) → 𝑠𝑇 )
44 12 43 sylbi ( 𝑠 { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) } → 𝑠𝑇 )
45 44 ssriv { 𝑥 ∈ 𝒫 𝒫 𝑋 ∣ ( 𝐴𝑥 ∧ ∀ 𝑦𝑥 { ( 𝑋𝑦 ) , ( 𝐾𝑦 ) } ⊆ 𝑥 ) } ⊆ 𝑇
46 10 45 eqsstri 𝑆𝑇
47 1 2 3 4 5 6 7 8 9 kur14lem8 ( 𝑇 ∈ Fin ∧ ( ♯ ‘ 𝑇 ) ≤ 1 4 )
48 1nn0 1 ∈ ℕ0
49 4nn0 4 ∈ ℕ0
50 48 49 deccl 1 4 ∈ ℕ0
51 46 47 50 hashsslei ( 𝑆 ∈ Fin ∧ ( ♯ ‘ 𝑆 ) ≤ 1 4 )