| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashsslei.b |
⊢ 𝐵 ⊆ 𝐴 |
| 2 |
|
hashsslei.a |
⊢ ( 𝐴 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) ≤ 𝑁 ) |
| 3 |
|
hashsslei.n |
⊢ 𝑁 ∈ ℕ0 |
| 4 |
2
|
simpli |
⊢ 𝐴 ∈ Fin |
| 5 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
| 6 |
4 1 5
|
mp2an |
⊢ 𝐵 ∈ Fin |
| 7 |
|
ssdomg |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
| 8 |
4 1 7
|
mp2 |
⊢ 𝐵 ≼ 𝐴 |
| 9 |
|
hashdom |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) |
| 10 |
6 4 9
|
mp2an |
⊢ ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) |
| 11 |
8 10
|
mpbir |
⊢ ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) |
| 12 |
2
|
simpri |
⊢ ( ♯ ‘ 𝐴 ) ≤ 𝑁 |
| 13 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 14 |
6 13
|
ax-mp |
⊢ ( ♯ ‘ 𝐵 ) ∈ ℕ0 |
| 15 |
14
|
nn0rei |
⊢ ( ♯ ‘ 𝐵 ) ∈ ℝ |
| 16 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 17 |
4 16
|
ax-mp |
⊢ ( ♯ ‘ 𝐴 ) ∈ ℕ0 |
| 18 |
17
|
nn0rei |
⊢ ( ♯ ‘ 𝐴 ) ∈ ℝ |
| 19 |
3
|
nn0rei |
⊢ 𝑁 ∈ ℝ |
| 20 |
15 18 19
|
letri |
⊢ ( ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ∧ ( ♯ ‘ 𝐴 ) ≤ 𝑁 ) → ( ♯ ‘ 𝐵 ) ≤ 𝑁 ) |
| 21 |
11 12 20
|
mp2an |
⊢ ( ♯ ‘ 𝐵 ) ≤ 𝑁 |
| 22 |
6 21
|
pm3.2i |
⊢ ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑁 ) |