Metamath Proof Explorer


Theorem kur14lem8

Description: Lemma for kur14 . Show that the set T contains at most 1 4 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 1 4 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 1 4 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
kur14lem.i 𝐼 = ( int ‘ 𝐽 )
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = ( 𝑋 ∖ ( 𝐾𝐴 ) )
kur14lem.c 𝐶 = ( 𝐾 ‘ ( 𝑋𝐴 ) )
kur14lem.d 𝐷 = ( 𝐼 ‘ ( 𝐾𝐴 ) )
kur14lem.t 𝑇 = ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ∪ ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) )
Assertion kur14lem8 ( 𝑇 ∈ Fin ∧ ( ♯ ‘ 𝑇 ) ≤ 1 4 )

Proof

Step Hyp Ref Expression
1 kur14lem.j 𝐽 ∈ Top
2 kur14lem.x 𝑋 = 𝐽
3 kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
4 kur14lem.i 𝐼 = ( int ‘ 𝐽 )
5 kur14lem.a 𝐴𝑋
6 kur14lem.b 𝐵 = ( 𝑋 ∖ ( 𝐾𝐴 ) )
7 kur14lem.c 𝐶 = ( 𝐾 ‘ ( 𝑋𝐴 ) )
8 kur14lem.d 𝐷 = ( 𝐼 ‘ ( 𝐾𝐴 ) )
9 kur14lem.t 𝑇 = ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ∪ ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) )
10 eqid ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) = ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } )
11 eqid ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) = ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } )
12 hashtplei ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ) ≤ 3 )
13 hashtplei ( { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ≤ 3 )
14 3nn0 3 ∈ ℕ0
15 3p3e6 ( 3 + 3 ) = 6
16 11 12 13 14 14 15 hashunlei ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∈ Fin ∧ ( ♯ ‘ ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ) ≤ 6 )
17 hashtplei ( { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ∈ Fin ∧ ( ♯ ‘ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ≤ 3 )
18 6nn0 6 ∈ ℕ0
19 6p3e9 ( 6 + 3 ) = 9
20 10 16 17 18 14 19 hashunlei ( ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ∈ Fin ∧ ( ♯ ‘ ( ( { 𝐴 , ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼𝐴 ) } ) ∪ { ( 𝐾𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼𝐴 ) ) } ) ) ≤ 9 )
21 eqid ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) = ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } )
22 hashtplei ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∈ Fin ∧ ( ♯ ‘ { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ) ≤ 3 )
23 hashprlei ( { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ∈ Fin ∧ ( ♯ ‘ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) ≤ 2 )
24 2nn0 2 ∈ ℕ0
25 3p2e5 ( 3 + 2 ) = 5
26 21 22 23 14 24 25 hashunlei ( ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) ∈ Fin ∧ ( ♯ ‘ ( { ( 𝐼𝐶 ) , ( 𝐾𝐷 ) , ( 𝐼 ‘ ( 𝐾𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼𝐴 ) ) ) } ) ) ≤ 5 )
27 9nn0 9 ∈ ℕ0
28 5nn0 5 ∈ ℕ0
29 9p5e14 ( 9 + 5 ) = 1 4
30 9 20 26 27 28 29 hashunlei ( 𝑇 ∈ Fin ∧ ( ♯ ‘ 𝑇 ) ≤ 1 4 )