Metamath Proof Explorer


Theorem kur14lem8

Description: Lemma for kur14 . Show that the set T contains at most 1 4 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 1 4 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 1 4 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j JTop
kur14lem.x X=J
kur14lem.k K=clsJ
kur14lem.i I=intJ
kur14lem.a AX
kur14lem.b B=XKA
kur14lem.c C=KXA
kur14lem.d D=IKA
kur14lem.t T=AXAKABCIAKBDKIAICKDIKBKICIKIA
Assertion kur14lem8 TFinT14

Proof

Step Hyp Ref Expression
1 kur14lem.j JTop
2 kur14lem.x X=J
3 kur14lem.k K=clsJ
4 kur14lem.i I=intJ
5 kur14lem.a AX
6 kur14lem.b B=XKA
7 kur14lem.c C=KXA
8 kur14lem.d D=IKA
9 kur14lem.t T=AXAKABCIAKBDKIAICKDIKBKICIKIA
10 eqid AXAKABCIAKBDKIA=AXAKABCIAKBDKIA
11 eqid AXAKABCIA=AXAKABCIA
12 hashtplei AXAKAFinAXAKA3
13 hashtplei BCIAFinBCIA3
14 3nn0 30
15 3p3e6 3+3=6
16 11 12 13 14 14 15 hashunlei AXAKABCIAFinAXAKABCIA6
17 hashtplei KBDKIAFinKBDKIA3
18 6nn0 60
19 6p3e9 6+3=9
20 10 16 17 18 14 19 hashunlei AXAKABCIAKBDKIAFinAXAKABCIAKBDKIA9
21 eqid ICKDIKBKICIKIA=ICKDIKBKICIKIA
22 hashtplei ICKDIKBFinICKDIKB3
23 hashprlei KICIKIAFinKICIKIA2
24 2nn0 20
25 3p2e5 3+2=5
26 21 22 23 14 24 25 hashunlei ICKDIKBKICIKIAFinICKDIKBKICIKIA5
27 9nn0 90
28 5nn0 50
29 9p5e14 9+5=14
30 9 20 26 27 28 29 hashunlei TFinT14