Metamath Proof Explorer


Theorem kur14lem8

Description: Lemma for kur14 . Show that the set T contains at most 1 4 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 1 4 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 1 4 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j
|- J e. Top
kur14lem.x
|- X = U. J
kur14lem.k
|- K = ( cls ` J )
kur14lem.i
|- I = ( int ` J )
kur14lem.a
|- A C_ X
kur14lem.b
|- B = ( X \ ( K ` A ) )
kur14lem.c
|- C = ( K ` ( X \ A ) )
kur14lem.d
|- D = ( I ` ( K ` A ) )
kur14lem.t
|- T = ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) )
Assertion kur14lem8
|- ( T e. Fin /\ ( # ` T ) <_ ; 1 4 )

Proof

Step Hyp Ref Expression
1 kur14lem.j
 |-  J e. Top
2 kur14lem.x
 |-  X = U. J
3 kur14lem.k
 |-  K = ( cls ` J )
4 kur14lem.i
 |-  I = ( int ` J )
5 kur14lem.a
 |-  A C_ X
6 kur14lem.b
 |-  B = ( X \ ( K ` A ) )
7 kur14lem.c
 |-  C = ( K ` ( X \ A ) )
8 kur14lem.d
 |-  D = ( I ` ( K ` A ) )
9 kur14lem.t
 |-  T = ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) )
10 eqid
 |-  ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) = ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } )
11 eqid
 |-  ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) = ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } )
12 hashtplei
 |-  ( { A , ( X \ A ) , ( K ` A ) } e. Fin /\ ( # ` { A , ( X \ A ) , ( K ` A ) } ) <_ 3 )
13 hashtplei
 |-  ( { B , C , ( I ` A ) } e. Fin /\ ( # ` { B , C , ( I ` A ) } ) <_ 3 )
14 3nn0
 |-  3 e. NN0
15 3p3e6
 |-  ( 3 + 3 ) = 6
16 11 12 13 14 14 15 hashunlei
 |-  ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) e. Fin /\ ( # ` ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) ) <_ 6 )
17 hashtplei
 |-  ( { ( K ` B ) , D , ( K ` ( I ` A ) ) } e. Fin /\ ( # ` { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) <_ 3 )
18 6nn0
 |-  6 e. NN0
19 6p3e9
 |-  ( 6 + 3 ) = 9
20 10 16 17 18 14 19 hashunlei
 |-  ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) e. Fin /\ ( # ` ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) ) <_ 9 )
21 eqid
 |-  ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) = ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } )
22 hashtplei
 |-  ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } e. Fin /\ ( # ` { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } ) <_ 3 )
23 hashprlei
 |-  ( { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } e. Fin /\ ( # ` { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) <_ 2 )
24 2nn0
 |-  2 e. NN0
25 3p2e5
 |-  ( 3 + 2 ) = 5
26 21 22 23 14 24 25 hashunlei
 |-  ( ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) e. Fin /\ ( # ` ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) <_ 5 )
27 9nn0
 |-  9 e. NN0
28 5nn0
 |-  5 e. NN0
29 9p5e14
 |-  ( 9 + 5 ) = ; 1 4
30 9 20 26 27 28 29 hashunlei
 |-  ( T e. Fin /\ ( # ` T ) <_ ; 1 4 )