Metamath Proof Explorer


Theorem 3p3e6

Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 3p3e6
|- ( 3 + 3 ) = 6

Proof

Step Hyp Ref Expression
1 df-3
 |-  3 = ( 2 + 1 )
2 1 oveq2i
 |-  ( 3 + 3 ) = ( 3 + ( 2 + 1 ) )
3 3cn
 |-  3 e. CC
4 2cn
 |-  2 e. CC
5 ax-1cn
 |-  1 e. CC
6 3 4 5 addassi
 |-  ( ( 3 + 2 ) + 1 ) = ( 3 + ( 2 + 1 ) )
7 2 6 eqtr4i
 |-  ( 3 + 3 ) = ( ( 3 + 2 ) + 1 )
8 df-6
 |-  6 = ( 5 + 1 )
9 3p2e5
 |-  ( 3 + 2 ) = 5
10 9 oveq1i
 |-  ( ( 3 + 2 ) + 1 ) = ( 5 + 1 )
11 8 10 eqtr4i
 |-  6 = ( ( 3 + 2 ) + 1 )
12 7 11 eqtr4i
 |-  ( 3 + 3 ) = 6