Metamath Proof Explorer


Theorem kur14lem9

Description: Lemma for kur14 . Since the set T is closed under closure and complement, it contains the minimal set S as a subset, so S also has at most 1 4 elements. (Indeed S = T , and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j J Top
kur14lem.x X = J
kur14lem.k K = cls J
kur14lem.i I = int J
kur14lem.a A X
kur14lem.b B = X K A
kur14lem.c C = K X A
kur14lem.d D = I K A
kur14lem.t T = A X A K A B C I A K B D K I A I C K D I K B K I C I K I A
kur14lem.s S = x 𝒫 𝒫 X | A x y x X y K y x
Assertion kur14lem9 S Fin S 14

Proof

Step Hyp Ref Expression
1 kur14lem.j J Top
2 kur14lem.x X = J
3 kur14lem.k K = cls J
4 kur14lem.i I = int J
5 kur14lem.a A X
6 kur14lem.b B = X K A
7 kur14lem.c C = K X A
8 kur14lem.d D = I K A
9 kur14lem.t T = A X A K A B C I A K B D K I A I C K D I K B K I C I K I A
10 kur14lem.s S = x 𝒫 𝒫 X | A x y x X y K y x
11 vex s V
12 11 elintrab s x 𝒫 𝒫 X | A x y x X y K y x x 𝒫 𝒫 X A x y x X y K y x s x
13 ssun1 A X A K A A X A K A B C I A
14 ssun1 A X A K A B C I A A X A K A B C I A K B D K I A
15 ssun1 A X A K A B C I A K B D K I A A X A K A B C I A K B D K I A I C K D I K B K I C I K I A
16 15 9 sseqtrri A X A K A B C I A K B D K I A T
17 14 16 sstri A X A K A B C I A T
18 13 17 sstri A X A K A T
19 2 topopn J Top X J
20 1 19 ax-mp X J
21 20 elexi X V
22 21 5 ssexi A V
23 22 tpid1 A A X A K A
24 18 23 sselii A T
25 1 2 3 4 5 6 7 8 9 kur14lem7 y T y X X y K y T
26 25 simprd y T X y K y T
27 26 rgen y T X y K y T
28 25 simpld y T y X
29 21 elpw2 y 𝒫 X y X
30 28 29 sylibr y T y 𝒫 X
31 30 ssriv T 𝒫 X
32 21 pwex 𝒫 X V
33 32 elpw2 T 𝒫 𝒫 X T 𝒫 X
34 31 33 mpbir T 𝒫 𝒫 X
35 eleq2 x = T A x A T
36 sseq2 x = T X y K y x X y K y T
37 36 raleqbi1dv x = T y x X y K y x y T X y K y T
38 35 37 anbi12d x = T A x y x X y K y x A T y T X y K y T
39 eleq2 x = T s x s T
40 38 39 imbi12d x = T A x y x X y K y x s x A T y T X y K y T s T
41 40 rspccv x 𝒫 𝒫 X A x y x X y K y x s x T 𝒫 𝒫 X A T y T X y K y T s T
42 34 41 mpi x 𝒫 𝒫 X A x y x X y K y x s x A T y T X y K y T s T
43 24 27 42 mp2ani x 𝒫 𝒫 X A x y x X y K y x s x s T
44 12 43 sylbi s x 𝒫 𝒫 X | A x y x X y K y x s T
45 44 ssriv x 𝒫 𝒫 X | A x y x X y K y x T
46 10 45 eqsstri S T
47 1 2 3 4 5 6 7 8 9 kur14lem8 T Fin T 14
48 1nn0 1 0
49 4nn0 4 0
50 48 49 deccl 14 0
51 46 47 50 hashsslei S Fin S 14