Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem.j |
⊢ 𝐽 ∈ Top |
2 |
|
kur14lem.x |
⊢ 𝑋 = ∪ 𝐽 |
3 |
|
kur14lem.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
4 |
|
kur14lem.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
5 |
|
kur14lem.a |
⊢ 𝐴 ⊆ 𝑋 |
6 |
|
kur14lem.b |
⊢ 𝐵 = ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) |
7 |
|
kur14lem.c |
⊢ 𝐶 = ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) |
8 |
|
kur14lem.d |
⊢ 𝐷 = ( 𝐼 ‘ ( 𝐾 ‘ 𝐴 ) ) |
9 |
|
kur14lem.t |
⊢ 𝑇 = ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∪ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) |
10 |
|
elun |
⊢ ( 𝑁 ∈ ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∪ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) ↔ ( 𝑁 ∈ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∨ 𝑁 ∈ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) ) |
11 |
|
elun |
⊢ ( 𝑁 ∈ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ↔ ( 𝑁 ∈ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∨ 𝑁 ∈ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ) |
12 |
|
elun |
⊢ ( 𝑁 ∈ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ↔ ( 𝑁 ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∨ 𝑁 ∈ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ) |
13 |
|
eltpi |
⊢ ( 𝑁 ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } → ( 𝑁 = 𝐴 ∨ 𝑁 = ( 𝑋 ∖ 𝐴 ) ∨ 𝑁 = ( 𝐾 ‘ 𝐴 ) ) ) |
14 |
|
ssun1 |
⊢ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ⊆ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) |
15 |
|
ssun1 |
⊢ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ⊆ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) |
16 |
|
ssun1 |
⊢ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ⊆ ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∪ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) |
17 |
16 9
|
sseqtrri |
⊢ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ⊆ 𝑇 |
18 |
15 17
|
sstri |
⊢ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ⊆ 𝑇 |
19 |
14 18
|
sstri |
⊢ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ⊆ 𝑇 |
20 |
2
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
21 |
1 20
|
ax-mp |
⊢ 𝑋 ∈ 𝐽 |
22 |
21
|
elexi |
⊢ 𝑋 ∈ V |
23 |
|
difss |
⊢ ( 𝑋 ∖ 𝐴 ) ⊆ 𝑋 |
24 |
22 23
|
ssexi |
⊢ ( 𝑋 ∖ 𝐴 ) ∈ V |
25 |
24
|
tpid2 |
⊢ ( 𝑋 ∖ 𝐴 ) ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } |
26 |
19 25
|
sselii |
⊢ ( 𝑋 ∖ 𝐴 ) ∈ 𝑇 |
27 |
|
fvex |
⊢ ( 𝐾 ‘ 𝐴 ) ∈ V |
28 |
27
|
tpid3 |
⊢ ( 𝐾 ‘ 𝐴 ) ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } |
29 |
19 28
|
sselii |
⊢ ( 𝐾 ‘ 𝐴 ) ∈ 𝑇 |
30 |
5 26 29
|
kur14lem1 |
⊢ ( 𝑁 = 𝐴 → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
31 |
1 2 3 4 5
|
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 |
32 |
22 5
|
ssexi |
⊢ 𝐴 ∈ V |
33 |
32
|
tpid1 |
⊢ 𝐴 ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } |
34 |
19 33
|
sselii |
⊢ 𝐴 ∈ 𝑇 |
35 |
31 34
|
eqeltri |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝑇 |
36 |
|
ssun2 |
⊢ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ⊆ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) |
37 |
36 18
|
sstri |
⊢ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ⊆ 𝑇 |
38 |
1 2 3 4 23
|
kur14lem3 |
⊢ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ⊆ 𝑋 |
39 |
7 38
|
eqsstri |
⊢ 𝐶 ⊆ 𝑋 |
40 |
22 39
|
ssexi |
⊢ 𝐶 ∈ V |
41 |
40
|
tpid2 |
⊢ 𝐶 ∈ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } |
42 |
37 41
|
sselii |
⊢ 𝐶 ∈ 𝑇 |
43 |
7 42
|
eqeltrri |
⊢ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝑇 |
44 |
23 35 43
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝑋 ∖ 𝐴 ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
45 |
1 2 3 4 5
|
kur14lem3 |
⊢ ( 𝐾 ‘ 𝐴 ) ⊆ 𝑋 |
46 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ⊆ 𝑋 |
47 |
6 46
|
eqsstri |
⊢ 𝐵 ⊆ 𝑋 |
48 |
22 47
|
ssexi |
⊢ 𝐵 ∈ V |
49 |
48
|
tpid1 |
⊢ 𝐵 ∈ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } |
50 |
37 49
|
sselii |
⊢ 𝐵 ∈ 𝑇 |
51 |
6 50
|
eqeltrri |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ∈ 𝑇 |
52 |
1 2 3 4 5
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( 𝐾 ‘ 𝐴 ) |
53 |
52 29
|
eqeltri |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐴 ) ) ∈ 𝑇 |
54 |
45 51 53
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐾 ‘ 𝐴 ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
55 |
30 44 54
|
3jaoi |
⊢ ( ( 𝑁 = 𝐴 ∨ 𝑁 = ( 𝑋 ∖ 𝐴 ) ∨ 𝑁 = ( 𝐾 ‘ 𝐴 ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
56 |
13 55
|
syl |
⊢ ( 𝑁 ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
57 |
|
eltpi |
⊢ ( 𝑁 ∈ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } → ( 𝑁 = 𝐵 ∨ 𝑁 = 𝐶 ∨ 𝑁 = ( 𝐼 ‘ 𝐴 ) ) ) |
58 |
6
|
difeq2i |
⊢ ( 𝑋 ∖ 𝐵 ) = ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) |
59 |
1 2 3 4 45
|
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) = ( 𝐾 ‘ 𝐴 ) |
60 |
58 59
|
eqtri |
⊢ ( 𝑋 ∖ 𝐵 ) = ( 𝐾 ‘ 𝐴 ) |
61 |
60 29
|
eqeltri |
⊢ ( 𝑋 ∖ 𝐵 ) ∈ 𝑇 |
62 |
|
ssun2 |
⊢ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ⊆ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) |
63 |
62 17
|
sstri |
⊢ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ⊆ 𝑇 |
64 |
|
fvex |
⊢ ( 𝐾 ‘ 𝐵 ) ∈ V |
65 |
64
|
tpid1 |
⊢ ( 𝐾 ‘ 𝐵 ) ∈ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } |
66 |
63 65
|
sselii |
⊢ ( 𝐾 ‘ 𝐵 ) ∈ 𝑇 |
67 |
47 61 66
|
kur14lem1 |
⊢ ( 𝑁 = 𝐵 → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
68 |
7
|
difeq2i |
⊢ ( 𝑋 ∖ 𝐶 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) |
69 |
1 2 3 4 5
|
kur14lem2 |
⊢ ( 𝐼 ‘ 𝐴 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) |
70 |
68 69
|
eqtr4i |
⊢ ( 𝑋 ∖ 𝐶 ) = ( 𝐼 ‘ 𝐴 ) |
71 |
|
fvex |
⊢ ( 𝐼 ‘ 𝐴 ) ∈ V |
72 |
71
|
tpid3 |
⊢ ( 𝐼 ‘ 𝐴 ) ∈ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } |
73 |
37 72
|
sselii |
⊢ ( 𝐼 ‘ 𝐴 ) ∈ 𝑇 |
74 |
70 73
|
eqeltri |
⊢ ( 𝑋 ∖ 𝐶 ) ∈ 𝑇 |
75 |
1 2 3 4 23
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) = ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) |
76 |
7
|
fveq2i |
⊢ ( 𝐾 ‘ 𝐶 ) = ( 𝐾 ‘ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) |
77 |
75 76 7
|
3eqtr4i |
⊢ ( 𝐾 ‘ 𝐶 ) = 𝐶 |
78 |
77 42
|
eqeltri |
⊢ ( 𝐾 ‘ 𝐶 ) ∈ 𝑇 |
79 |
39 74 78
|
kur14lem1 |
⊢ ( 𝑁 = 𝐶 → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
80 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐴 ) ) ) ⊆ 𝑋 |
81 |
69 80
|
eqsstri |
⊢ ( 𝐼 ‘ 𝐴 ) ⊆ 𝑋 |
82 |
70
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ 𝐶 ) ) = ( 𝑋 ∖ ( 𝐼 ‘ 𝐴 ) ) |
83 |
1 2 3 4 39
|
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ 𝐶 ) ) = 𝐶 |
84 |
82 83
|
eqtr3i |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ 𝐴 ) ) = 𝐶 |
85 |
84 42
|
eqeltri |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ 𝐴 ) ) ∈ 𝑇 |
86 |
|
fvex |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ V |
87 |
86
|
tpid3 |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } |
88 |
63 87
|
sselii |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ 𝑇 |
89 |
81 85 88
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐼 ‘ 𝐴 ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
90 |
67 79 89
|
3jaoi |
⊢ ( ( 𝑁 = 𝐵 ∨ 𝑁 = 𝐶 ∨ 𝑁 = ( 𝐼 ‘ 𝐴 ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
91 |
57 90
|
syl |
⊢ ( 𝑁 ∈ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
92 |
56 91
|
jaoi |
⊢ ( ( 𝑁 ∈ { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∨ 𝑁 ∈ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
93 |
12 92
|
sylbi |
⊢ ( 𝑁 ∈ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
94 |
|
eltpi |
⊢ ( 𝑁 ∈ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } → ( 𝑁 = ( 𝐾 ‘ 𝐵 ) ∨ 𝑁 = 𝐷 ∨ 𝑁 = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
95 |
1 2 3 4 47
|
kur14lem3 |
⊢ ( 𝐾 ‘ 𝐵 ) ⊆ 𝑋 |
96 |
1 2 3 4 45
|
kur14lem2 |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) |
97 |
6
|
fveq2i |
⊢ ( 𝐾 ‘ 𝐵 ) = ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) |
98 |
97
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) |
99 |
96 8 98
|
3eqtr4i |
⊢ 𝐷 = ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) |
100 |
8 96
|
eqtri |
⊢ 𝐷 = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) |
101 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) ⊆ 𝑋 |
102 |
100 101
|
eqsstri |
⊢ 𝐷 ⊆ 𝑋 |
103 |
22 102
|
ssexi |
⊢ 𝐷 ∈ V |
104 |
103
|
tpid2 |
⊢ 𝐷 ∈ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } |
105 |
63 104
|
sselii |
⊢ 𝐷 ∈ 𝑇 |
106 |
99 105
|
eqeltrri |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ∈ 𝑇 |
107 |
1 2 3 4 47
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐵 ) ) = ( 𝐾 ‘ 𝐵 ) |
108 |
107 66
|
eqeltri |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐵 ) ) ∈ 𝑇 |
109 |
95 106 108
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐾 ‘ 𝐵 ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
110 |
99
|
difeq2i |
⊢ ( 𝑋 ∖ 𝐷 ) = ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) |
111 |
1 2 3 4 95
|
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) = ( 𝐾 ‘ 𝐵 ) |
112 |
110 111
|
eqtri |
⊢ ( 𝑋 ∖ 𝐷 ) = ( 𝐾 ‘ 𝐵 ) |
113 |
112 66
|
eqeltri |
⊢ ( 𝑋 ∖ 𝐷 ) ∈ 𝑇 |
114 |
|
ssun1 |
⊢ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ⊆ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) |
115 |
|
ssun2 |
⊢ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ⊆ ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∪ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) |
116 |
115 9
|
sseqtrri |
⊢ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ⊆ 𝑇 |
117 |
114 116
|
sstri |
⊢ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ⊆ 𝑇 |
118 |
|
fvex |
⊢ ( 𝐾 ‘ 𝐷 ) ∈ V |
119 |
118
|
tpid2 |
⊢ ( 𝐾 ‘ 𝐷 ) ∈ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } |
120 |
117 119
|
sselii |
⊢ ( 𝐾 ‘ 𝐷 ) ∈ 𝑇 |
121 |
102 113 120
|
kur14lem1 |
⊢ ( 𝑁 = 𝐷 → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
122 |
1 2 3 4 81
|
kur14lem3 |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ⊆ 𝑋 |
123 |
1 2 3 4 39
|
kur14lem2 |
⊢ ( 𝐼 ‘ 𝐶 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐶 ) ) ) |
124 |
70
|
fveq2i |
⊢ ( 𝐾 ‘ ( 𝑋 ∖ 𝐶 ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) |
125 |
124
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐶 ) ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) |
126 |
123 125
|
eqtri |
⊢ ( 𝐼 ‘ 𝐶 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) |
127 |
|
fvex |
⊢ ( 𝐼 ‘ 𝐶 ) ∈ V |
128 |
127
|
tpid1 |
⊢ ( 𝐼 ‘ 𝐶 ) ∈ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } |
129 |
117 128
|
sselii |
⊢ ( 𝐼 ‘ 𝐶 ) ∈ 𝑇 |
130 |
126 129
|
eqeltrri |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ∈ 𝑇 |
131 |
1 2 3 4 81
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) |
132 |
131 88
|
eqeltri |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ∈ 𝑇 |
133 |
122 130 132
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
134 |
109 121 133
|
3jaoi |
⊢ ( ( 𝑁 = ( 𝐾 ‘ 𝐵 ) ∨ 𝑁 = 𝐷 ∨ 𝑁 = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
135 |
94 134
|
syl |
⊢ ( 𝑁 ∈ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
136 |
93 135
|
jaoi |
⊢ ( ( 𝑁 ∈ ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∨ 𝑁 ∈ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
137 |
11 136
|
sylbi |
⊢ ( 𝑁 ∈ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
138 |
|
elun |
⊢ ( 𝑁 ∈ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ↔ ( 𝑁 ∈ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∨ 𝑁 ∈ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) |
139 |
|
eltpi |
⊢ ( 𝑁 ∈ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } → ( 𝑁 = ( 𝐼 ‘ 𝐶 ) ∨ 𝑁 = ( 𝐾 ‘ 𝐷 ) ∨ 𝑁 = ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ) |
140 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝐶 ) ) ) ⊆ 𝑋 |
141 |
123 140
|
eqsstri |
⊢ ( 𝐼 ‘ 𝐶 ) ⊆ 𝑋 |
142 |
126
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ 𝐶 ) ) = ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
143 |
1 2 3 4 122
|
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) |
144 |
142 143
|
eqtri |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ 𝐶 ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) |
145 |
144 88
|
eqeltri |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ 𝐶 ) ) ∈ 𝑇 |
146 |
|
ssun2 |
⊢ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ⊆ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) |
147 |
146 116
|
sstri |
⊢ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ⊆ 𝑇 |
148 |
|
fvex |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ∈ V |
149 |
148
|
prid1 |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ∈ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } |
150 |
147 149
|
sselii |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ∈ 𝑇 |
151 |
141 145 150
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐼 ‘ 𝐶 ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
152 |
1 2 3 4 102
|
kur14lem3 |
⊢ ( 𝐾 ‘ 𝐷 ) ⊆ 𝑋 |
153 |
99
|
fveq2i |
⊢ ( 𝐾 ‘ 𝐷 ) = ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) |
154 |
153
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐷 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ) |
155 |
1 2 3 4 95
|
kur14lem2 |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ) |
156 |
154 155
|
eqtr4i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐷 ) ) = ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) |
157 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ∈ V |
158 |
157
|
tpid3 |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ∈ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } |
159 |
117 158
|
sselii |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ∈ 𝑇 |
160 |
156 159
|
eqeltri |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐷 ) ) ∈ 𝑇 |
161 |
1 2 3 4 102
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) = ( 𝐾 ‘ 𝐷 ) |
162 |
161 120
|
eqeltri |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ 𝑇 |
163 |
152 160 162
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐾 ‘ 𝐷 ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
164 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ) ⊆ 𝑋 |
165 |
155 164
|
eqsstri |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ⊆ 𝑋 |
166 |
156
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ 𝐷 ) ) ) = ( 𝑋 ∖ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) |
167 |
1 2 3 4 152
|
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ 𝐷 ) ) ) = ( 𝐾 ‘ 𝐷 ) |
168 |
166 167
|
eqtr3i |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) = ( 𝐾 ‘ 𝐷 ) |
169 |
168 120
|
eqeltri |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ∈ 𝑇 |
170 |
1 2 3 4 5 6
|
kur14lem6 |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) = ( 𝐾 ‘ 𝐵 ) |
171 |
170 66
|
eqeltri |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ∈ 𝑇 |
172 |
165 169 171
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
173 |
151 163 172
|
3jaoi |
⊢ ( ( 𝑁 = ( 𝐼 ‘ 𝐶 ) ∨ 𝑁 = ( 𝐾 ‘ 𝐷 ) ∨ 𝑁 = ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
174 |
139 173
|
syl |
⊢ ( 𝑁 ∈ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
175 |
|
elpri |
⊢ ( 𝑁 ∈ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } → ( 𝑁 = ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ∨ 𝑁 = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) ) |
176 |
1 2 3 4 141
|
kur14lem3 |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ⊆ 𝑋 |
177 |
126
|
fveq2i |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) = ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
178 |
177
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) ) |
179 |
1 2 3 4 122
|
kur14lem2 |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) ) |
180 |
178 179
|
eqtr4i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ) = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) |
181 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ∈ V |
182 |
181
|
prid2 |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ∈ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } |
183 |
147 182
|
sselii |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ∈ 𝑇 |
184 |
180 183
|
eqeltri |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ) ∈ 𝑇 |
185 |
1 2 3 4 141
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) |
186 |
185 150
|
eqeltri |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ) ∈ 𝑇 |
187 |
176 184 186
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
188 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) ) ⊆ 𝑋 |
189 |
179 188
|
eqsstri |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ⊆ 𝑋 |
190 |
180
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ) ) = ( 𝑋 ∖ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
191 |
1 2 3 4 176
|
kur14lem4 |
⊢ ( 𝑋 ∖ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) |
192 |
190 191
|
eqtr3i |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) |
193 |
192 150
|
eqeltri |
⊢ ( 𝑋 ∖ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) ∈ 𝑇 |
194 |
1 2 3 4 23 69
|
kur14lem6 |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) = ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) |
195 |
194 88
|
eqeltri |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) ∈ 𝑇 |
196 |
189 193 195
|
kur14lem1 |
⊢ ( 𝑁 = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
197 |
187 196
|
jaoi |
⊢ ( ( 𝑁 = ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) ∨ 𝑁 = ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
198 |
175 197
|
syl |
⊢ ( 𝑁 ∈ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
199 |
174 198
|
jaoi |
⊢ ( ( 𝑁 ∈ { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∨ 𝑁 ∈ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
200 |
138 199
|
sylbi |
⊢ ( 𝑁 ∈ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
201 |
137 200
|
jaoi |
⊢ ( ( 𝑁 ∈ ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∨ 𝑁 ∈ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
202 |
10 201
|
sylbi |
⊢ ( 𝑁 ∈ ( ( ( { 𝐴 , ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ∪ { 𝐵 , 𝐶 , ( 𝐼 ‘ 𝐴 ) } ) ∪ { ( 𝐾 ‘ 𝐵 ) , 𝐷 , ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) } ) ∪ ( { ( 𝐼 ‘ 𝐶 ) , ( 𝐾 ‘ 𝐷 ) , ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) } ∪ { ( 𝐾 ‘ ( 𝐼 ‘ 𝐶 ) ) , ( 𝐼 ‘ ( 𝐾 ‘ ( 𝐼 ‘ 𝐴 ) ) ) } ) ) → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |
203 |
202 9
|
eleq2s |
⊢ ( 𝑁 ∈ 𝑇 → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |