Metamath Proof Explorer


Theorem kur14lem1

Description: Lemma for kur14 . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypotheses kur14lem1.a 𝐴𝑋
kur14lem1.c ( 𝑋𝐴 ) ∈ 𝑇
kur14lem1.k ( 𝐾𝐴 ) ∈ 𝑇
Assertion kur14lem1 ( 𝑁 = 𝐴 → ( 𝑁𝑋 ∧ { ( 𝑋𝑁 ) , ( 𝐾𝑁 ) } ⊆ 𝑇 ) )

Proof

Step Hyp Ref Expression
1 kur14lem1.a 𝐴𝑋
2 kur14lem1.c ( 𝑋𝐴 ) ∈ 𝑇
3 kur14lem1.k ( 𝐾𝐴 ) ∈ 𝑇
4 sseq1 ( 𝑁 = 𝐴 → ( 𝑁𝑋𝐴𝑋 ) )
5 1 4 mpbiri ( 𝑁 = 𝐴𝑁𝑋 )
6 difeq2 ( 𝑁 = 𝐴 → ( 𝑋𝑁 ) = ( 𝑋𝐴 ) )
7 fveq2 ( 𝑁 = 𝐴 → ( 𝐾𝑁 ) = ( 𝐾𝐴 ) )
8 6 7 preq12d ( 𝑁 = 𝐴 → { ( 𝑋𝑁 ) , ( 𝐾𝑁 ) } = { ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } )
9 prssi ( ( ( 𝑋𝐴 ) ∈ 𝑇 ∧ ( 𝐾𝐴 ) ∈ 𝑇 ) → { ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ⊆ 𝑇 )
10 2 3 9 mp2an { ( 𝑋𝐴 ) , ( 𝐾𝐴 ) } ⊆ 𝑇
11 8 10 eqsstrdi ( 𝑁 = 𝐴 → { ( 𝑋𝑁 ) , ( 𝐾𝑁 ) } ⊆ 𝑇 )
12 5 11 jca ( 𝑁 = 𝐴 → ( 𝑁𝑋 ∧ { ( 𝑋𝑁 ) , ( 𝐾𝑁 ) } ⊆ 𝑇 ) )