Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem1.a |
⊢ 𝐴 ⊆ 𝑋 |
2 |
|
kur14lem1.c |
⊢ ( 𝑋 ∖ 𝐴 ) ∈ 𝑇 |
3 |
|
kur14lem1.k |
⊢ ( 𝐾 ‘ 𝐴 ) ∈ 𝑇 |
4 |
|
sseq1 |
⊢ ( 𝑁 = 𝐴 → ( 𝑁 ⊆ 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
5 |
1 4
|
mpbiri |
⊢ ( 𝑁 = 𝐴 → 𝑁 ⊆ 𝑋 ) |
6 |
|
difeq2 |
⊢ ( 𝑁 = 𝐴 → ( 𝑋 ∖ 𝑁 ) = ( 𝑋 ∖ 𝐴 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑁 = 𝐴 → ( 𝐾 ‘ 𝑁 ) = ( 𝐾 ‘ 𝐴 ) ) |
8 |
6 7
|
preq12d |
⊢ ( 𝑁 = 𝐴 → { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } = { ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ) |
9 |
|
prssi |
⊢ ( ( ( 𝑋 ∖ 𝐴 ) ∈ 𝑇 ∧ ( 𝐾 ‘ 𝐴 ) ∈ 𝑇 ) → { ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ⊆ 𝑇 ) |
10 |
2 3 9
|
mp2an |
⊢ { ( 𝑋 ∖ 𝐴 ) , ( 𝐾 ‘ 𝐴 ) } ⊆ 𝑇 |
11 |
8 10
|
eqsstrdi |
⊢ ( 𝑁 = 𝐴 → { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) |
12 |
5 11
|
jca |
⊢ ( 𝑁 = 𝐴 → ( 𝑁 ⊆ 𝑋 ∧ { ( 𝑋 ∖ 𝑁 ) , ( 𝐾 ‘ 𝑁 ) } ⊆ 𝑇 ) ) |