Metamath Proof Explorer


Theorem kur14lem1

Description: Lemma for kur14 . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypotheses kur14lem1.a A X
kur14lem1.c X A T
kur14lem1.k K A T
Assertion kur14lem1 N = A N X X N K N T

Proof

Step Hyp Ref Expression
1 kur14lem1.a A X
2 kur14lem1.c X A T
3 kur14lem1.k K A T
4 sseq1 N = A N X A X
5 1 4 mpbiri N = A N X
6 difeq2 N = A X N = X A
7 fveq2 N = A K N = K A
8 6 7 preq12d N = A X N K N = X A K A
9 prssi X A T K A T X A K A T
10 2 3 9 mp2an X A K A T
11 8 10 eqsstrdi N = A X N K N T
12 5 11 jca N = A N X X N K N T