Metamath Proof Explorer


Theorem kur14lem1

Description: Lemma for kur14 . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypotheses kur14lem1.a AX
kur14lem1.c XAT
kur14lem1.k KAT
Assertion kur14lem1 N=ANXXNKNT

Proof

Step Hyp Ref Expression
1 kur14lem1.a AX
2 kur14lem1.c XAT
3 kur14lem1.k KAT
4 sseq1 N=ANXAX
5 1 4 mpbiri N=ANX
6 difeq2 N=AXN=XA
7 fveq2 N=AKN=KA
8 6 7 preq12d N=AXNKN=XAKA
9 prssi XATKATXAKAT
10 2 3 9 mp2an XAKAT
11 8 10 eqsstrdi N=AXNKNT
12 5 11 jca N=ANXXNKNT