Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem1.a |
|- A C_ X |
2 |
|
kur14lem1.c |
|- ( X \ A ) e. T |
3 |
|
kur14lem1.k |
|- ( K ` A ) e. T |
4 |
|
sseq1 |
|- ( N = A -> ( N C_ X <-> A C_ X ) ) |
5 |
1 4
|
mpbiri |
|- ( N = A -> N C_ X ) |
6 |
|
difeq2 |
|- ( N = A -> ( X \ N ) = ( X \ A ) ) |
7 |
|
fveq2 |
|- ( N = A -> ( K ` N ) = ( K ` A ) ) |
8 |
6 7
|
preq12d |
|- ( N = A -> { ( X \ N ) , ( K ` N ) } = { ( X \ A ) , ( K ` A ) } ) |
9 |
|
prssi |
|- ( ( ( X \ A ) e. T /\ ( K ` A ) e. T ) -> { ( X \ A ) , ( K ` A ) } C_ T ) |
10 |
2 3 9
|
mp2an |
|- { ( X \ A ) , ( K ` A ) } C_ T |
11 |
8 10
|
eqsstrdi |
|- ( N = A -> { ( X \ N ) , ( K ` N ) } C_ T ) |
12 |
5 11
|
jca |
|- ( N = A -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |