| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kur14lem1.a |
|- A C_ X |
| 2 |
|
kur14lem1.c |
|- ( X \ A ) e. T |
| 3 |
|
kur14lem1.k |
|- ( K ` A ) e. T |
| 4 |
|
sseq1 |
|- ( N = A -> ( N C_ X <-> A C_ X ) ) |
| 5 |
1 4
|
mpbiri |
|- ( N = A -> N C_ X ) |
| 6 |
|
difeq2 |
|- ( N = A -> ( X \ N ) = ( X \ A ) ) |
| 7 |
|
fveq2 |
|- ( N = A -> ( K ` N ) = ( K ` A ) ) |
| 8 |
6 7
|
preq12d |
|- ( N = A -> { ( X \ N ) , ( K ` N ) } = { ( X \ A ) , ( K ` A ) } ) |
| 9 |
|
prssi |
|- ( ( ( X \ A ) e. T /\ ( K ` A ) e. T ) -> { ( X \ A ) , ( K ` A ) } C_ T ) |
| 10 |
2 3 9
|
mp2an |
|- { ( X \ A ) , ( K ` A ) } C_ T |
| 11 |
8 10
|
eqsstrdi |
|- ( N = A -> { ( X \ N ) , ( K ` N ) } C_ T ) |
| 12 |
5 11
|
jca |
|- ( N = A -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |