Metamath Proof Explorer


Theorem kur14lem1

Description: Lemma for kur14 . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypotheses kur14lem1.a
|- A C_ X
kur14lem1.c
|- ( X \ A ) e. T
kur14lem1.k
|- ( K ` A ) e. T
Assertion kur14lem1
|- ( N = A -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )

Proof

Step Hyp Ref Expression
1 kur14lem1.a
 |-  A C_ X
2 kur14lem1.c
 |-  ( X \ A ) e. T
3 kur14lem1.k
 |-  ( K ` A ) e. T
4 sseq1
 |-  ( N = A -> ( N C_ X <-> A C_ X ) )
5 1 4 mpbiri
 |-  ( N = A -> N C_ X )
6 difeq2
 |-  ( N = A -> ( X \ N ) = ( X \ A ) )
7 fveq2
 |-  ( N = A -> ( K ` N ) = ( K ` A ) )
8 6 7 preq12d
 |-  ( N = A -> { ( X \ N ) , ( K ` N ) } = { ( X \ A ) , ( K ` A ) } )
9 prssi
 |-  ( ( ( X \ A ) e. T /\ ( K ` A ) e. T ) -> { ( X \ A ) , ( K ` A ) } C_ T )
10 2 3 9 mp2an
 |-  { ( X \ A ) , ( K ` A ) } C_ T
11 8 10 eqsstrdi
 |-  ( N = A -> { ( X \ N ) , ( K ` N ) } C_ T )
12 5 11 jca
 |-  ( N = A -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )