Metamath Proof Explorer


Theorem tpid3

Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by JJ, 30-Apr-2021)

Ref Expression
Hypothesis tpid3.1 𝐶 ∈ V
Assertion tpid3 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 }

Proof

Step Hyp Ref Expression
1 tpid3.1 𝐶 ∈ V
2 tpid3g ( 𝐶 ∈ V → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } )
3 1 2 ax-mp 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 }