Metamath Proof Explorer


Theorem kur14lem5

Description: Lemma for kur14 . Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
kur14lem.i 𝐼 = ( int ‘ 𝐽 )
kur14lem.a 𝐴𝑋
Assertion kur14lem5 ( 𝐾 ‘ ( 𝐾𝐴 ) ) = ( 𝐾𝐴 )

Proof

Step Hyp Ref Expression
1 kur14lem.j 𝐽 ∈ Top
2 kur14lem.x 𝑋 = 𝐽
3 kur14lem.k 𝐾 = ( cls ‘ 𝐽 )
4 kur14lem.i 𝐼 = ( int ‘ 𝐽 )
5 kur14lem.a 𝐴𝑋
6 2 clsidm ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )
7 1 5 6 mp2an ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 )
8 3 fveq1i ( 𝐾𝐴 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 )
9 3 8 fveq12i ( 𝐾 ‘ ( 𝐾𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )
10 7 9 8 3eqtr4i ( 𝐾 ‘ ( 𝐾𝐴 ) ) = ( 𝐾𝐴 )