Description: Lemma for kur14 . Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kur14lem.j | ⊢ 𝐽 ∈ Top | |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 | ||
kur14lem.k | ⊢ 𝐾 = ( cls ‘ 𝐽 ) | ||
kur14lem.i | ⊢ 𝐼 = ( int ‘ 𝐽 ) | ||
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 | ||
Assertion | kur14lem5 | ⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( 𝐾 ‘ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | ⊢ 𝐽 ∈ Top | |
2 | kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 | |
3 | kur14lem.k | ⊢ 𝐾 = ( cls ‘ 𝐽 ) | |
4 | kur14lem.i | ⊢ 𝐼 = ( int ‘ 𝐽 ) | |
5 | kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 | |
6 | 2 | clsidm | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
7 | 1 5 6 | mp2an | ⊢ ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) |
8 | 3 | fveq1i | ⊢ ( 𝐾 ‘ 𝐴 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) |
9 | 3 8 | fveq12i | ⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
10 | 7 9 8 | 3eqtr4i | ⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( 𝐾 ‘ 𝐴 ) |