Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem.j |
⊢ 𝐽 ∈ Top |
2 |
|
kur14lem.x |
⊢ 𝑋 = ∪ 𝐽 |
3 |
|
kur14lem.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
4 |
|
kur14lem.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
5 |
|
kur14lem.a |
⊢ 𝐴 ⊆ 𝑋 |
6 |
|
kur14lem.b |
⊢ 𝐵 = ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) |
7 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ⊆ 𝑋 |
8 |
6 7
|
eqsstri |
⊢ 𝐵 ⊆ 𝑋 |
9 |
1 2 3 4 8
|
kur14lem3 |
⊢ ( 𝐾 ‘ 𝐵 ) ⊆ 𝑋 |
10 |
4
|
fveq1i |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐵 ) ) |
11 |
2
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐾 ‘ 𝐵 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐵 ) ) ⊆ ( 𝐾 ‘ 𝐵 ) ) |
12 |
1 9 11
|
mp2an |
⊢ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐵 ) ) ⊆ ( 𝐾 ‘ 𝐵 ) |
13 |
10 12
|
eqsstri |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ⊆ ( 𝐾 ‘ 𝐵 ) |
14 |
2
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐾 ‘ 𝐵 ) ⊆ 𝑋 ∧ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ⊆ ( 𝐾 ‘ 𝐵 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐵 ) ) ) |
15 |
1 9 13 14
|
mp3an |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐵 ) ) |
16 |
3
|
fveq1i |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) |
17 |
3
|
fveq1i |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐵 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐵 ) ) |
18 |
15 16 17
|
3sstr4i |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( 𝐾 ‘ ( 𝐾 ‘ 𝐵 ) ) |
19 |
1 2 3 4 8
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐵 ) ) = ( 𝐾 ‘ 𝐵 ) |
20 |
18 19
|
sseqtri |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( 𝐾 ‘ 𝐵 ) |
21 |
1 2 3 4 9
|
kur14lem2 |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ) |
22 |
|
difss |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ) ⊆ 𝑋 |
23 |
21 22
|
eqsstri |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ⊆ 𝑋 |
24 |
1 2 3 4 5
|
kur14lem3 |
⊢ ( 𝐾 ‘ 𝐴 ) ⊆ 𝑋 |
25 |
6
|
fveq2i |
⊢ ( 𝐾 ‘ 𝐵 ) = ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) |
26 |
25
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) |
27 |
1 2 3 4 24
|
kur14lem2 |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ) ) |
28 |
4
|
fveq1i |
⊢ ( 𝐼 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) |
29 |
26 27 28
|
3eqtr2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) |
30 |
2
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐾 ‘ 𝐴 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) ⊆ ( 𝐾 ‘ 𝐴 ) ) |
31 |
1 24 30
|
mp2an |
⊢ ( ( int ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) ⊆ ( 𝐾 ‘ 𝐴 ) |
32 |
29 31
|
eqsstri |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ⊆ ( 𝐾 ‘ 𝐴 ) |
33 |
2
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐾 ‘ 𝐴 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ⊆ ( 𝐾 ‘ 𝐴 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) ) |
34 |
1 24 32 33
|
mp3an |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) |
35 |
3
|
fveq1i |
⊢ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) |
36 |
1 2 3 4 5
|
kur14lem5 |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( 𝐾 ‘ 𝐴 ) |
37 |
3
|
fveq1i |
⊢ ( 𝐾 ‘ ( 𝐾 ‘ 𝐴 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) |
38 |
36 37
|
eqtr3i |
⊢ ( 𝐾 ‘ 𝐴 ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐾 ‘ 𝐴 ) ) |
39 |
34 35 38
|
3sstr4i |
⊢ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( 𝐾 ‘ 𝐴 ) |
40 |
|
sscon |
⊢ ( ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ⊆ ( 𝐾 ‘ 𝐴 ) → ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ⊆ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ) ) |
41 |
39 40
|
ax-mp |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ 𝐴 ) ) ⊆ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ ( 𝐾 ‘ 𝐵 ) ) ) ) |
42 |
41 6 21
|
3sstr4i |
⊢ 𝐵 ⊆ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) |
43 |
2
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ⊆ 𝑋 ∧ 𝐵 ⊆ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) ) |
44 |
1 23 42 43
|
mp3an |
⊢ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) |
45 |
3
|
fveq1i |
⊢ ( 𝐾 ‘ 𝐵 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) |
46 |
44 45 16
|
3sstr4i |
⊢ ( 𝐾 ‘ 𝐵 ) ⊆ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) |
47 |
20 46
|
eqssi |
⊢ ( 𝐾 ‘ ( 𝐼 ‘ ( 𝐾 ‘ 𝐵 ) ) ) = ( 𝐾 ‘ 𝐵 ) |