Metamath Proof Explorer


Theorem tpid1

Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Hypothesis tpid1.1 𝐴 ∈ V
Assertion tpid1 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 }

Proof

Step Hyp Ref Expression
1 tpid1.1 𝐴 ∈ V
2 eqid 𝐴 = 𝐴
3 2 3mix1i ( 𝐴 = 𝐴𝐴 = 𝐵𝐴 = 𝐶 )
4 1 eltp ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐴𝐴 = 𝐵𝐴 = 𝐶 ) )
5 3 4 mpbir 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 }