| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kur14lem.j |  |-  J e. Top | 
						
							| 2 |  | kur14lem.x |  |-  X = U. J | 
						
							| 3 |  | kur14lem.k |  |-  K = ( cls ` J ) | 
						
							| 4 |  | kur14lem.i |  |-  I = ( int ` J ) | 
						
							| 5 |  | kur14lem.a |  |-  A C_ X | 
						
							| 6 |  | kur14lem.b |  |-  B = ( X \ ( K ` A ) ) | 
						
							| 7 |  | kur14lem.c |  |-  C = ( K ` ( X \ A ) ) | 
						
							| 8 |  | kur14lem.d |  |-  D = ( I ` ( K ` A ) ) | 
						
							| 9 |  | kur14lem.t |  |-  T = ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) | 
						
							| 10 |  | elun |  |-  ( N e. ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) <-> ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) \/ N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) ) | 
						
							| 11 |  | elun |  |-  ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) <-> ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) \/ N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) ) | 
						
							| 12 |  | elun |  |-  ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) <-> ( N e. { A , ( X \ A ) , ( K ` A ) } \/ N e. { B , C , ( I ` A ) } ) ) | 
						
							| 13 |  | eltpi |  |-  ( N e. { A , ( X \ A ) , ( K ` A ) } -> ( N = A \/ N = ( X \ A ) \/ N = ( K ` A ) ) ) | 
						
							| 14 |  | ssun1 |  |-  { A , ( X \ A ) , ( K ` A ) } C_ ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) | 
						
							| 15 |  | ssun1 |  |-  ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) C_ ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) | 
						
							| 16 |  | ssun1 |  |-  ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) C_ ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) | 
						
							| 17 | 16 9 | sseqtrri |  |-  ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) C_ T | 
						
							| 18 | 15 17 | sstri |  |-  ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) C_ T | 
						
							| 19 | 14 18 | sstri |  |-  { A , ( X \ A ) , ( K ` A ) } C_ T | 
						
							| 20 | 2 | topopn |  |-  ( J e. Top -> X e. J ) | 
						
							| 21 | 1 20 | ax-mp |  |-  X e. J | 
						
							| 22 | 21 | elexi |  |-  X e. _V | 
						
							| 23 |  | difss |  |-  ( X \ A ) C_ X | 
						
							| 24 | 22 23 | ssexi |  |-  ( X \ A ) e. _V | 
						
							| 25 | 24 | tpid2 |  |-  ( X \ A ) e. { A , ( X \ A ) , ( K ` A ) } | 
						
							| 26 | 19 25 | sselii |  |-  ( X \ A ) e. T | 
						
							| 27 |  | fvex |  |-  ( K ` A ) e. _V | 
						
							| 28 | 27 | tpid3 |  |-  ( K ` A ) e. { A , ( X \ A ) , ( K ` A ) } | 
						
							| 29 | 19 28 | sselii |  |-  ( K ` A ) e. T | 
						
							| 30 | 5 26 29 | kur14lem1 |  |-  ( N = A -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 31 | 1 2 3 4 5 | kur14lem4 |  |-  ( X \ ( X \ A ) ) = A | 
						
							| 32 | 22 5 | ssexi |  |-  A e. _V | 
						
							| 33 | 32 | tpid1 |  |-  A e. { A , ( X \ A ) , ( K ` A ) } | 
						
							| 34 | 19 33 | sselii |  |-  A e. T | 
						
							| 35 | 31 34 | eqeltri |  |-  ( X \ ( X \ A ) ) e. T | 
						
							| 36 |  | ssun2 |  |-  { B , C , ( I ` A ) } C_ ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) | 
						
							| 37 | 36 18 | sstri |  |-  { B , C , ( I ` A ) } C_ T | 
						
							| 38 | 1 2 3 4 23 | kur14lem3 |  |-  ( K ` ( X \ A ) ) C_ X | 
						
							| 39 | 7 38 | eqsstri |  |-  C C_ X | 
						
							| 40 | 22 39 | ssexi |  |-  C e. _V | 
						
							| 41 | 40 | tpid2 |  |-  C e. { B , C , ( I ` A ) } | 
						
							| 42 | 37 41 | sselii |  |-  C e. T | 
						
							| 43 | 7 42 | eqeltrri |  |-  ( K ` ( X \ A ) ) e. T | 
						
							| 44 | 23 35 43 | kur14lem1 |  |-  ( N = ( X \ A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 45 | 1 2 3 4 5 | kur14lem3 |  |-  ( K ` A ) C_ X | 
						
							| 46 |  | difss |  |-  ( X \ ( K ` A ) ) C_ X | 
						
							| 47 | 6 46 | eqsstri |  |-  B C_ X | 
						
							| 48 | 22 47 | ssexi |  |-  B e. _V | 
						
							| 49 | 48 | tpid1 |  |-  B e. { B , C , ( I ` A ) } | 
						
							| 50 | 37 49 | sselii |  |-  B e. T | 
						
							| 51 | 6 50 | eqeltrri |  |-  ( X \ ( K ` A ) ) e. T | 
						
							| 52 | 1 2 3 4 5 | kur14lem5 |  |-  ( K ` ( K ` A ) ) = ( K ` A ) | 
						
							| 53 | 52 29 | eqeltri |  |-  ( K ` ( K ` A ) ) e. T | 
						
							| 54 | 45 51 53 | kur14lem1 |  |-  ( N = ( K ` A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 55 | 30 44 54 | 3jaoi |  |-  ( ( N = A \/ N = ( X \ A ) \/ N = ( K ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 56 | 13 55 | syl |  |-  ( N e. { A , ( X \ A ) , ( K ` A ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 57 |  | eltpi |  |-  ( N e. { B , C , ( I ` A ) } -> ( N = B \/ N = C \/ N = ( I ` A ) ) ) | 
						
							| 58 | 6 | difeq2i |  |-  ( X \ B ) = ( X \ ( X \ ( K ` A ) ) ) | 
						
							| 59 | 1 2 3 4 45 | kur14lem4 |  |-  ( X \ ( X \ ( K ` A ) ) ) = ( K ` A ) | 
						
							| 60 | 58 59 | eqtri |  |-  ( X \ B ) = ( K ` A ) | 
						
							| 61 | 60 29 | eqeltri |  |-  ( X \ B ) e. T | 
						
							| 62 |  | ssun2 |  |-  { ( K ` B ) , D , ( K ` ( I ` A ) ) } C_ ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) | 
						
							| 63 | 62 17 | sstri |  |-  { ( K ` B ) , D , ( K ` ( I ` A ) ) } C_ T | 
						
							| 64 |  | fvex |  |-  ( K ` B ) e. _V | 
						
							| 65 | 64 | tpid1 |  |-  ( K ` B ) e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } | 
						
							| 66 | 63 65 | sselii |  |-  ( K ` B ) e. T | 
						
							| 67 | 47 61 66 | kur14lem1 |  |-  ( N = B -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 68 | 7 | difeq2i |  |-  ( X \ C ) = ( X \ ( K ` ( X \ A ) ) ) | 
						
							| 69 | 1 2 3 4 5 | kur14lem2 |  |-  ( I ` A ) = ( X \ ( K ` ( X \ A ) ) ) | 
						
							| 70 | 68 69 | eqtr4i |  |-  ( X \ C ) = ( I ` A ) | 
						
							| 71 |  | fvex |  |-  ( I ` A ) e. _V | 
						
							| 72 | 71 | tpid3 |  |-  ( I ` A ) e. { B , C , ( I ` A ) } | 
						
							| 73 | 37 72 | sselii |  |-  ( I ` A ) e. T | 
						
							| 74 | 70 73 | eqeltri |  |-  ( X \ C ) e. T | 
						
							| 75 | 1 2 3 4 23 | kur14lem5 |  |-  ( K ` ( K ` ( X \ A ) ) ) = ( K ` ( X \ A ) ) | 
						
							| 76 | 7 | fveq2i |  |-  ( K ` C ) = ( K ` ( K ` ( X \ A ) ) ) | 
						
							| 77 | 75 76 7 | 3eqtr4i |  |-  ( K ` C ) = C | 
						
							| 78 | 77 42 | eqeltri |  |-  ( K ` C ) e. T | 
						
							| 79 | 39 74 78 | kur14lem1 |  |-  ( N = C -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 80 |  | difss |  |-  ( X \ ( K ` ( X \ A ) ) ) C_ X | 
						
							| 81 | 69 80 | eqsstri |  |-  ( I ` A ) C_ X | 
						
							| 82 | 70 | difeq2i |  |-  ( X \ ( X \ C ) ) = ( X \ ( I ` A ) ) | 
						
							| 83 | 1 2 3 4 39 | kur14lem4 |  |-  ( X \ ( X \ C ) ) = C | 
						
							| 84 | 82 83 | eqtr3i |  |-  ( X \ ( I ` A ) ) = C | 
						
							| 85 | 84 42 | eqeltri |  |-  ( X \ ( I ` A ) ) e. T | 
						
							| 86 |  | fvex |  |-  ( K ` ( I ` A ) ) e. _V | 
						
							| 87 | 86 | tpid3 |  |-  ( K ` ( I ` A ) ) e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } | 
						
							| 88 | 63 87 | sselii |  |-  ( K ` ( I ` A ) ) e. T | 
						
							| 89 | 81 85 88 | kur14lem1 |  |-  ( N = ( I ` A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 90 | 67 79 89 | 3jaoi |  |-  ( ( N = B \/ N = C \/ N = ( I ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 91 | 57 90 | syl |  |-  ( N e. { B , C , ( I ` A ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 92 | 56 91 | jaoi |  |-  ( ( N e. { A , ( X \ A ) , ( K ` A ) } \/ N e. { B , C , ( I ` A ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 93 | 12 92 | sylbi |  |-  ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 94 |  | eltpi |  |-  ( N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } -> ( N = ( K ` B ) \/ N = D \/ N = ( K ` ( I ` A ) ) ) ) | 
						
							| 95 | 1 2 3 4 47 | kur14lem3 |  |-  ( K ` B ) C_ X | 
						
							| 96 | 1 2 3 4 45 | kur14lem2 |  |-  ( I ` ( K ` A ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) | 
						
							| 97 | 6 | fveq2i |  |-  ( K ` B ) = ( K ` ( X \ ( K ` A ) ) ) | 
						
							| 98 | 97 | difeq2i |  |-  ( X \ ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) | 
						
							| 99 | 96 8 98 | 3eqtr4i |  |-  D = ( X \ ( K ` B ) ) | 
						
							| 100 | 8 96 | eqtri |  |-  D = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) | 
						
							| 101 |  | difss |  |-  ( X \ ( K ` ( X \ ( K ` A ) ) ) ) C_ X | 
						
							| 102 | 100 101 | eqsstri |  |-  D C_ X | 
						
							| 103 | 22 102 | ssexi |  |-  D e. _V | 
						
							| 104 | 103 | tpid2 |  |-  D e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } | 
						
							| 105 | 63 104 | sselii |  |-  D e. T | 
						
							| 106 | 99 105 | eqeltrri |  |-  ( X \ ( K ` B ) ) e. T | 
						
							| 107 | 1 2 3 4 47 | kur14lem5 |  |-  ( K ` ( K ` B ) ) = ( K ` B ) | 
						
							| 108 | 107 66 | eqeltri |  |-  ( K ` ( K ` B ) ) e. T | 
						
							| 109 | 95 106 108 | kur14lem1 |  |-  ( N = ( K ` B ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 110 | 99 | difeq2i |  |-  ( X \ D ) = ( X \ ( X \ ( K ` B ) ) ) | 
						
							| 111 | 1 2 3 4 95 | kur14lem4 |  |-  ( X \ ( X \ ( K ` B ) ) ) = ( K ` B ) | 
						
							| 112 | 110 111 | eqtri |  |-  ( X \ D ) = ( K ` B ) | 
						
							| 113 | 112 66 | eqeltri |  |-  ( X \ D ) e. T | 
						
							| 114 |  | ssun1 |  |-  { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } C_ ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) | 
						
							| 115 |  | ssun2 |  |-  ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) C_ ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) | 
						
							| 116 | 115 9 | sseqtrri |  |-  ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) C_ T | 
						
							| 117 | 114 116 | sstri |  |-  { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } C_ T | 
						
							| 118 |  | fvex |  |-  ( K ` D ) e. _V | 
						
							| 119 | 118 | tpid2 |  |-  ( K ` D ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } | 
						
							| 120 | 117 119 | sselii |  |-  ( K ` D ) e. T | 
						
							| 121 | 102 113 120 | kur14lem1 |  |-  ( N = D -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 122 | 1 2 3 4 81 | kur14lem3 |  |-  ( K ` ( I ` A ) ) C_ X | 
						
							| 123 | 1 2 3 4 39 | kur14lem2 |  |-  ( I ` C ) = ( X \ ( K ` ( X \ C ) ) ) | 
						
							| 124 | 70 | fveq2i |  |-  ( K ` ( X \ C ) ) = ( K ` ( I ` A ) ) | 
						
							| 125 | 124 | difeq2i |  |-  ( X \ ( K ` ( X \ C ) ) ) = ( X \ ( K ` ( I ` A ) ) ) | 
						
							| 126 | 123 125 | eqtri |  |-  ( I ` C ) = ( X \ ( K ` ( I ` A ) ) ) | 
						
							| 127 |  | fvex |  |-  ( I ` C ) e. _V | 
						
							| 128 | 127 | tpid1 |  |-  ( I ` C ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } | 
						
							| 129 | 117 128 | sselii |  |-  ( I ` C ) e. T | 
						
							| 130 | 126 129 | eqeltrri |  |-  ( X \ ( K ` ( I ` A ) ) ) e. T | 
						
							| 131 | 1 2 3 4 81 | kur14lem5 |  |-  ( K ` ( K ` ( I ` A ) ) ) = ( K ` ( I ` A ) ) | 
						
							| 132 | 131 88 | eqeltri |  |-  ( K ` ( K ` ( I ` A ) ) ) e. T | 
						
							| 133 | 122 130 132 | kur14lem1 |  |-  ( N = ( K ` ( I ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 134 | 109 121 133 | 3jaoi |  |-  ( ( N = ( K ` B ) \/ N = D \/ N = ( K ` ( I ` A ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 135 | 94 134 | syl |  |-  ( N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 136 | 93 135 | jaoi |  |-  ( ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) \/ N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 137 | 11 136 | sylbi |  |-  ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 138 |  | elun |  |-  ( N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) <-> ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } \/ N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) | 
						
							| 139 |  | eltpi |  |-  ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } -> ( N = ( I ` C ) \/ N = ( K ` D ) \/ N = ( I ` ( K ` B ) ) ) ) | 
						
							| 140 |  | difss |  |-  ( X \ ( K ` ( X \ C ) ) ) C_ X | 
						
							| 141 | 123 140 | eqsstri |  |-  ( I ` C ) C_ X | 
						
							| 142 | 126 | difeq2i |  |-  ( X \ ( I ` C ) ) = ( X \ ( X \ ( K ` ( I ` A ) ) ) ) | 
						
							| 143 | 1 2 3 4 122 | kur14lem4 |  |-  ( X \ ( X \ ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` A ) ) | 
						
							| 144 | 142 143 | eqtri |  |-  ( X \ ( I ` C ) ) = ( K ` ( I ` A ) ) | 
						
							| 145 | 144 88 | eqeltri |  |-  ( X \ ( I ` C ) ) e. T | 
						
							| 146 |  | ssun2 |  |-  { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } C_ ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) | 
						
							| 147 | 146 116 | sstri |  |-  { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } C_ T | 
						
							| 148 |  | fvex |  |-  ( K ` ( I ` C ) ) e. _V | 
						
							| 149 | 148 | prid1 |  |-  ( K ` ( I ` C ) ) e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } | 
						
							| 150 | 147 149 | sselii |  |-  ( K ` ( I ` C ) ) e. T | 
						
							| 151 | 141 145 150 | kur14lem1 |  |-  ( N = ( I ` C ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 152 | 1 2 3 4 102 | kur14lem3 |  |-  ( K ` D ) C_ X | 
						
							| 153 | 99 | fveq2i |  |-  ( K ` D ) = ( K ` ( X \ ( K ` B ) ) ) | 
						
							| 154 | 153 | difeq2i |  |-  ( X \ ( K ` D ) ) = ( X \ ( K ` ( X \ ( K ` B ) ) ) ) | 
						
							| 155 | 1 2 3 4 95 | kur14lem2 |  |-  ( I ` ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` B ) ) ) ) | 
						
							| 156 | 154 155 | eqtr4i |  |-  ( X \ ( K ` D ) ) = ( I ` ( K ` B ) ) | 
						
							| 157 |  | fvex |  |-  ( I ` ( K ` B ) ) e. _V | 
						
							| 158 | 157 | tpid3 |  |-  ( I ` ( K ` B ) ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } | 
						
							| 159 | 117 158 | sselii |  |-  ( I ` ( K ` B ) ) e. T | 
						
							| 160 | 156 159 | eqeltri |  |-  ( X \ ( K ` D ) ) e. T | 
						
							| 161 | 1 2 3 4 102 | kur14lem5 |  |-  ( K ` ( K ` D ) ) = ( K ` D ) | 
						
							| 162 | 161 120 | eqeltri |  |-  ( K ` ( K ` D ) ) e. T | 
						
							| 163 | 152 160 162 | kur14lem1 |  |-  ( N = ( K ` D ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 164 |  | difss |  |-  ( X \ ( K ` ( X \ ( K ` B ) ) ) ) C_ X | 
						
							| 165 | 155 164 | eqsstri |  |-  ( I ` ( K ` B ) ) C_ X | 
						
							| 166 | 156 | difeq2i |  |-  ( X \ ( X \ ( K ` D ) ) ) = ( X \ ( I ` ( K ` B ) ) ) | 
						
							| 167 | 1 2 3 4 152 | kur14lem4 |  |-  ( X \ ( X \ ( K ` D ) ) ) = ( K ` D ) | 
						
							| 168 | 166 167 | eqtr3i |  |-  ( X \ ( I ` ( K ` B ) ) ) = ( K ` D ) | 
						
							| 169 | 168 120 | eqeltri |  |-  ( X \ ( I ` ( K ` B ) ) ) e. T | 
						
							| 170 | 1 2 3 4 5 6 | kur14lem6 |  |-  ( K ` ( I ` ( K ` B ) ) ) = ( K ` B ) | 
						
							| 171 | 170 66 | eqeltri |  |-  ( K ` ( I ` ( K ` B ) ) ) e. T | 
						
							| 172 | 165 169 171 | kur14lem1 |  |-  ( N = ( I ` ( K ` B ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 173 | 151 163 172 | 3jaoi |  |-  ( ( N = ( I ` C ) \/ N = ( K ` D ) \/ N = ( I ` ( K ` B ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 174 | 139 173 | syl |  |-  ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 175 |  | elpri |  |-  ( N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } -> ( N = ( K ` ( I ` C ) ) \/ N = ( I ` ( K ` ( I ` A ) ) ) ) ) | 
						
							| 176 | 1 2 3 4 141 | kur14lem3 |  |-  ( K ` ( I ` C ) ) C_ X | 
						
							| 177 | 126 | fveq2i |  |-  ( K ` ( I ` C ) ) = ( K ` ( X \ ( K ` ( I ` A ) ) ) ) | 
						
							| 178 | 177 | difeq2i |  |-  ( X \ ( K ` ( I ` C ) ) ) = ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) ) | 
						
							| 179 | 1 2 3 4 122 | kur14lem2 |  |-  ( I ` ( K ` ( I ` A ) ) ) = ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) ) | 
						
							| 180 | 178 179 | eqtr4i |  |-  ( X \ ( K ` ( I ` C ) ) ) = ( I ` ( K ` ( I ` A ) ) ) | 
						
							| 181 |  | fvex |  |-  ( I ` ( K ` ( I ` A ) ) ) e. _V | 
						
							| 182 | 181 | prid2 |  |-  ( I ` ( K ` ( I ` A ) ) ) e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } | 
						
							| 183 | 147 182 | sselii |  |-  ( I ` ( K ` ( I ` A ) ) ) e. T | 
						
							| 184 | 180 183 | eqeltri |  |-  ( X \ ( K ` ( I ` C ) ) ) e. T | 
						
							| 185 | 1 2 3 4 141 | kur14lem5 |  |-  ( K ` ( K ` ( I ` C ) ) ) = ( K ` ( I ` C ) ) | 
						
							| 186 | 185 150 | eqeltri |  |-  ( K ` ( K ` ( I ` C ) ) ) e. T | 
						
							| 187 | 176 184 186 | kur14lem1 |  |-  ( N = ( K ` ( I ` C ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 188 |  | difss |  |-  ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) ) C_ X | 
						
							| 189 | 179 188 | eqsstri |  |-  ( I ` ( K ` ( I ` A ) ) ) C_ X | 
						
							| 190 | 180 | difeq2i |  |-  ( X \ ( X \ ( K ` ( I ` C ) ) ) ) = ( X \ ( I ` ( K ` ( I ` A ) ) ) ) | 
						
							| 191 | 1 2 3 4 176 | kur14lem4 |  |-  ( X \ ( X \ ( K ` ( I ` C ) ) ) ) = ( K ` ( I ` C ) ) | 
						
							| 192 | 190 191 | eqtr3i |  |-  ( X \ ( I ` ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` C ) ) | 
						
							| 193 | 192 150 | eqeltri |  |-  ( X \ ( I ` ( K ` ( I ` A ) ) ) ) e. T | 
						
							| 194 | 1 2 3 4 23 69 | kur14lem6 |  |-  ( K ` ( I ` ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` A ) ) | 
						
							| 195 | 194 88 | eqeltri |  |-  ( K ` ( I ` ( K ` ( I ` A ) ) ) ) e. T | 
						
							| 196 | 189 193 195 | kur14lem1 |  |-  ( N = ( I ` ( K ` ( I ` A ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 197 | 187 196 | jaoi |  |-  ( ( N = ( K ` ( I ` C ) ) \/ N = ( I ` ( K ` ( I ` A ) ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 198 | 175 197 | syl |  |-  ( N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 199 | 174 198 | jaoi |  |-  ( ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } \/ N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 200 | 138 199 | sylbi |  |-  ( N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 201 | 137 200 | jaoi |  |-  ( ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) \/ N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 202 | 10 201 | sylbi |  |-  ( N e. ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) | 
						
							| 203 | 202 9 | eleq2s |  |-  ( N e. T -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |