Step |
Hyp |
Ref |
Expression |
1 |
|
kur14lem.j |
|- J e. Top |
2 |
|
kur14lem.x |
|- X = U. J |
3 |
|
kur14lem.k |
|- K = ( cls ` J ) |
4 |
|
kur14lem.i |
|- I = ( int ` J ) |
5 |
|
kur14lem.a |
|- A C_ X |
6 |
|
kur14lem.b |
|- B = ( X \ ( K ` A ) ) |
7 |
|
kur14lem.c |
|- C = ( K ` ( X \ A ) ) |
8 |
|
kur14lem.d |
|- D = ( I ` ( K ` A ) ) |
9 |
|
kur14lem.t |
|- T = ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) |
10 |
|
elun |
|- ( N e. ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) <-> ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) \/ N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) ) |
11 |
|
elun |
|- ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) <-> ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) \/ N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) ) |
12 |
|
elun |
|- ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) <-> ( N e. { A , ( X \ A ) , ( K ` A ) } \/ N e. { B , C , ( I ` A ) } ) ) |
13 |
|
eltpi |
|- ( N e. { A , ( X \ A ) , ( K ` A ) } -> ( N = A \/ N = ( X \ A ) \/ N = ( K ` A ) ) ) |
14 |
|
ssun1 |
|- { A , ( X \ A ) , ( K ` A ) } C_ ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) |
15 |
|
ssun1 |
|- ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) C_ ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) |
16 |
|
ssun1 |
|- ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) C_ ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) |
17 |
16 9
|
sseqtrri |
|- ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) C_ T |
18 |
15 17
|
sstri |
|- ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) C_ T |
19 |
14 18
|
sstri |
|- { A , ( X \ A ) , ( K ` A ) } C_ T |
20 |
2
|
topopn |
|- ( J e. Top -> X e. J ) |
21 |
1 20
|
ax-mp |
|- X e. J |
22 |
21
|
elexi |
|- X e. _V |
23 |
|
difss |
|- ( X \ A ) C_ X |
24 |
22 23
|
ssexi |
|- ( X \ A ) e. _V |
25 |
24
|
tpid2 |
|- ( X \ A ) e. { A , ( X \ A ) , ( K ` A ) } |
26 |
19 25
|
sselii |
|- ( X \ A ) e. T |
27 |
|
fvex |
|- ( K ` A ) e. _V |
28 |
27
|
tpid3 |
|- ( K ` A ) e. { A , ( X \ A ) , ( K ` A ) } |
29 |
19 28
|
sselii |
|- ( K ` A ) e. T |
30 |
5 26 29
|
kur14lem1 |
|- ( N = A -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
31 |
1 2 3 4 5
|
kur14lem4 |
|- ( X \ ( X \ A ) ) = A |
32 |
22 5
|
ssexi |
|- A e. _V |
33 |
32
|
tpid1 |
|- A e. { A , ( X \ A ) , ( K ` A ) } |
34 |
19 33
|
sselii |
|- A e. T |
35 |
31 34
|
eqeltri |
|- ( X \ ( X \ A ) ) e. T |
36 |
|
ssun2 |
|- { B , C , ( I ` A ) } C_ ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) |
37 |
36 18
|
sstri |
|- { B , C , ( I ` A ) } C_ T |
38 |
1 2 3 4 23
|
kur14lem3 |
|- ( K ` ( X \ A ) ) C_ X |
39 |
7 38
|
eqsstri |
|- C C_ X |
40 |
22 39
|
ssexi |
|- C e. _V |
41 |
40
|
tpid2 |
|- C e. { B , C , ( I ` A ) } |
42 |
37 41
|
sselii |
|- C e. T |
43 |
7 42
|
eqeltrri |
|- ( K ` ( X \ A ) ) e. T |
44 |
23 35 43
|
kur14lem1 |
|- ( N = ( X \ A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
45 |
1 2 3 4 5
|
kur14lem3 |
|- ( K ` A ) C_ X |
46 |
|
difss |
|- ( X \ ( K ` A ) ) C_ X |
47 |
6 46
|
eqsstri |
|- B C_ X |
48 |
22 47
|
ssexi |
|- B e. _V |
49 |
48
|
tpid1 |
|- B e. { B , C , ( I ` A ) } |
50 |
37 49
|
sselii |
|- B e. T |
51 |
6 50
|
eqeltrri |
|- ( X \ ( K ` A ) ) e. T |
52 |
1 2 3 4 5
|
kur14lem5 |
|- ( K ` ( K ` A ) ) = ( K ` A ) |
53 |
52 29
|
eqeltri |
|- ( K ` ( K ` A ) ) e. T |
54 |
45 51 53
|
kur14lem1 |
|- ( N = ( K ` A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
55 |
30 44 54
|
3jaoi |
|- ( ( N = A \/ N = ( X \ A ) \/ N = ( K ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
56 |
13 55
|
syl |
|- ( N e. { A , ( X \ A ) , ( K ` A ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
57 |
|
eltpi |
|- ( N e. { B , C , ( I ` A ) } -> ( N = B \/ N = C \/ N = ( I ` A ) ) ) |
58 |
6
|
difeq2i |
|- ( X \ B ) = ( X \ ( X \ ( K ` A ) ) ) |
59 |
1 2 3 4 45
|
kur14lem4 |
|- ( X \ ( X \ ( K ` A ) ) ) = ( K ` A ) |
60 |
58 59
|
eqtri |
|- ( X \ B ) = ( K ` A ) |
61 |
60 29
|
eqeltri |
|- ( X \ B ) e. T |
62 |
|
ssun2 |
|- { ( K ` B ) , D , ( K ` ( I ` A ) ) } C_ ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) |
63 |
62 17
|
sstri |
|- { ( K ` B ) , D , ( K ` ( I ` A ) ) } C_ T |
64 |
|
fvex |
|- ( K ` B ) e. _V |
65 |
64
|
tpid1 |
|- ( K ` B ) e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } |
66 |
63 65
|
sselii |
|- ( K ` B ) e. T |
67 |
47 61 66
|
kur14lem1 |
|- ( N = B -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
68 |
7
|
difeq2i |
|- ( X \ C ) = ( X \ ( K ` ( X \ A ) ) ) |
69 |
1 2 3 4 5
|
kur14lem2 |
|- ( I ` A ) = ( X \ ( K ` ( X \ A ) ) ) |
70 |
68 69
|
eqtr4i |
|- ( X \ C ) = ( I ` A ) |
71 |
|
fvex |
|- ( I ` A ) e. _V |
72 |
71
|
tpid3 |
|- ( I ` A ) e. { B , C , ( I ` A ) } |
73 |
37 72
|
sselii |
|- ( I ` A ) e. T |
74 |
70 73
|
eqeltri |
|- ( X \ C ) e. T |
75 |
1 2 3 4 23
|
kur14lem5 |
|- ( K ` ( K ` ( X \ A ) ) ) = ( K ` ( X \ A ) ) |
76 |
7
|
fveq2i |
|- ( K ` C ) = ( K ` ( K ` ( X \ A ) ) ) |
77 |
75 76 7
|
3eqtr4i |
|- ( K ` C ) = C |
78 |
77 42
|
eqeltri |
|- ( K ` C ) e. T |
79 |
39 74 78
|
kur14lem1 |
|- ( N = C -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
80 |
|
difss |
|- ( X \ ( K ` ( X \ A ) ) ) C_ X |
81 |
69 80
|
eqsstri |
|- ( I ` A ) C_ X |
82 |
70
|
difeq2i |
|- ( X \ ( X \ C ) ) = ( X \ ( I ` A ) ) |
83 |
1 2 3 4 39
|
kur14lem4 |
|- ( X \ ( X \ C ) ) = C |
84 |
82 83
|
eqtr3i |
|- ( X \ ( I ` A ) ) = C |
85 |
84 42
|
eqeltri |
|- ( X \ ( I ` A ) ) e. T |
86 |
|
fvex |
|- ( K ` ( I ` A ) ) e. _V |
87 |
86
|
tpid3 |
|- ( K ` ( I ` A ) ) e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } |
88 |
63 87
|
sselii |
|- ( K ` ( I ` A ) ) e. T |
89 |
81 85 88
|
kur14lem1 |
|- ( N = ( I ` A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
90 |
67 79 89
|
3jaoi |
|- ( ( N = B \/ N = C \/ N = ( I ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
91 |
57 90
|
syl |
|- ( N e. { B , C , ( I ` A ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
92 |
56 91
|
jaoi |
|- ( ( N e. { A , ( X \ A ) , ( K ` A ) } \/ N e. { B , C , ( I ` A ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
93 |
12 92
|
sylbi |
|- ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
94 |
|
eltpi |
|- ( N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } -> ( N = ( K ` B ) \/ N = D \/ N = ( K ` ( I ` A ) ) ) ) |
95 |
1 2 3 4 47
|
kur14lem3 |
|- ( K ` B ) C_ X |
96 |
1 2 3 4 45
|
kur14lem2 |
|- ( I ` ( K ` A ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) |
97 |
6
|
fveq2i |
|- ( K ` B ) = ( K ` ( X \ ( K ` A ) ) ) |
98 |
97
|
difeq2i |
|- ( X \ ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) |
99 |
96 8 98
|
3eqtr4i |
|- D = ( X \ ( K ` B ) ) |
100 |
8 96
|
eqtri |
|- D = ( X \ ( K ` ( X \ ( K ` A ) ) ) ) |
101 |
|
difss |
|- ( X \ ( K ` ( X \ ( K ` A ) ) ) ) C_ X |
102 |
100 101
|
eqsstri |
|- D C_ X |
103 |
22 102
|
ssexi |
|- D e. _V |
104 |
103
|
tpid2 |
|- D e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } |
105 |
63 104
|
sselii |
|- D e. T |
106 |
99 105
|
eqeltrri |
|- ( X \ ( K ` B ) ) e. T |
107 |
1 2 3 4 47
|
kur14lem5 |
|- ( K ` ( K ` B ) ) = ( K ` B ) |
108 |
107 66
|
eqeltri |
|- ( K ` ( K ` B ) ) e. T |
109 |
95 106 108
|
kur14lem1 |
|- ( N = ( K ` B ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
110 |
99
|
difeq2i |
|- ( X \ D ) = ( X \ ( X \ ( K ` B ) ) ) |
111 |
1 2 3 4 95
|
kur14lem4 |
|- ( X \ ( X \ ( K ` B ) ) ) = ( K ` B ) |
112 |
110 111
|
eqtri |
|- ( X \ D ) = ( K ` B ) |
113 |
112 66
|
eqeltri |
|- ( X \ D ) e. T |
114 |
|
ssun1 |
|- { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } C_ ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) |
115 |
|
ssun2 |
|- ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) C_ ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) |
116 |
115 9
|
sseqtrri |
|- ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) C_ T |
117 |
114 116
|
sstri |
|- { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } C_ T |
118 |
|
fvex |
|- ( K ` D ) e. _V |
119 |
118
|
tpid2 |
|- ( K ` D ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } |
120 |
117 119
|
sselii |
|- ( K ` D ) e. T |
121 |
102 113 120
|
kur14lem1 |
|- ( N = D -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
122 |
1 2 3 4 81
|
kur14lem3 |
|- ( K ` ( I ` A ) ) C_ X |
123 |
1 2 3 4 39
|
kur14lem2 |
|- ( I ` C ) = ( X \ ( K ` ( X \ C ) ) ) |
124 |
70
|
fveq2i |
|- ( K ` ( X \ C ) ) = ( K ` ( I ` A ) ) |
125 |
124
|
difeq2i |
|- ( X \ ( K ` ( X \ C ) ) ) = ( X \ ( K ` ( I ` A ) ) ) |
126 |
123 125
|
eqtri |
|- ( I ` C ) = ( X \ ( K ` ( I ` A ) ) ) |
127 |
|
fvex |
|- ( I ` C ) e. _V |
128 |
127
|
tpid1 |
|- ( I ` C ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } |
129 |
117 128
|
sselii |
|- ( I ` C ) e. T |
130 |
126 129
|
eqeltrri |
|- ( X \ ( K ` ( I ` A ) ) ) e. T |
131 |
1 2 3 4 81
|
kur14lem5 |
|- ( K ` ( K ` ( I ` A ) ) ) = ( K ` ( I ` A ) ) |
132 |
131 88
|
eqeltri |
|- ( K ` ( K ` ( I ` A ) ) ) e. T |
133 |
122 130 132
|
kur14lem1 |
|- ( N = ( K ` ( I ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
134 |
109 121 133
|
3jaoi |
|- ( ( N = ( K ` B ) \/ N = D \/ N = ( K ` ( I ` A ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
135 |
94 134
|
syl |
|- ( N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
136 |
93 135
|
jaoi |
|- ( ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) \/ N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
137 |
11 136
|
sylbi |
|- ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
138 |
|
elun |
|- ( N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) <-> ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } \/ N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) |
139 |
|
eltpi |
|- ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } -> ( N = ( I ` C ) \/ N = ( K ` D ) \/ N = ( I ` ( K ` B ) ) ) ) |
140 |
|
difss |
|- ( X \ ( K ` ( X \ C ) ) ) C_ X |
141 |
123 140
|
eqsstri |
|- ( I ` C ) C_ X |
142 |
126
|
difeq2i |
|- ( X \ ( I ` C ) ) = ( X \ ( X \ ( K ` ( I ` A ) ) ) ) |
143 |
1 2 3 4 122
|
kur14lem4 |
|- ( X \ ( X \ ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` A ) ) |
144 |
142 143
|
eqtri |
|- ( X \ ( I ` C ) ) = ( K ` ( I ` A ) ) |
145 |
144 88
|
eqeltri |
|- ( X \ ( I ` C ) ) e. T |
146 |
|
ssun2 |
|- { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } C_ ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) |
147 |
146 116
|
sstri |
|- { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } C_ T |
148 |
|
fvex |
|- ( K ` ( I ` C ) ) e. _V |
149 |
148
|
prid1 |
|- ( K ` ( I ` C ) ) e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } |
150 |
147 149
|
sselii |
|- ( K ` ( I ` C ) ) e. T |
151 |
141 145 150
|
kur14lem1 |
|- ( N = ( I ` C ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
152 |
1 2 3 4 102
|
kur14lem3 |
|- ( K ` D ) C_ X |
153 |
99
|
fveq2i |
|- ( K ` D ) = ( K ` ( X \ ( K ` B ) ) ) |
154 |
153
|
difeq2i |
|- ( X \ ( K ` D ) ) = ( X \ ( K ` ( X \ ( K ` B ) ) ) ) |
155 |
1 2 3 4 95
|
kur14lem2 |
|- ( I ` ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` B ) ) ) ) |
156 |
154 155
|
eqtr4i |
|- ( X \ ( K ` D ) ) = ( I ` ( K ` B ) ) |
157 |
|
fvex |
|- ( I ` ( K ` B ) ) e. _V |
158 |
157
|
tpid3 |
|- ( I ` ( K ` B ) ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } |
159 |
117 158
|
sselii |
|- ( I ` ( K ` B ) ) e. T |
160 |
156 159
|
eqeltri |
|- ( X \ ( K ` D ) ) e. T |
161 |
1 2 3 4 102
|
kur14lem5 |
|- ( K ` ( K ` D ) ) = ( K ` D ) |
162 |
161 120
|
eqeltri |
|- ( K ` ( K ` D ) ) e. T |
163 |
152 160 162
|
kur14lem1 |
|- ( N = ( K ` D ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
164 |
|
difss |
|- ( X \ ( K ` ( X \ ( K ` B ) ) ) ) C_ X |
165 |
155 164
|
eqsstri |
|- ( I ` ( K ` B ) ) C_ X |
166 |
156
|
difeq2i |
|- ( X \ ( X \ ( K ` D ) ) ) = ( X \ ( I ` ( K ` B ) ) ) |
167 |
1 2 3 4 152
|
kur14lem4 |
|- ( X \ ( X \ ( K ` D ) ) ) = ( K ` D ) |
168 |
166 167
|
eqtr3i |
|- ( X \ ( I ` ( K ` B ) ) ) = ( K ` D ) |
169 |
168 120
|
eqeltri |
|- ( X \ ( I ` ( K ` B ) ) ) e. T |
170 |
1 2 3 4 5 6
|
kur14lem6 |
|- ( K ` ( I ` ( K ` B ) ) ) = ( K ` B ) |
171 |
170 66
|
eqeltri |
|- ( K ` ( I ` ( K ` B ) ) ) e. T |
172 |
165 169 171
|
kur14lem1 |
|- ( N = ( I ` ( K ` B ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
173 |
151 163 172
|
3jaoi |
|- ( ( N = ( I ` C ) \/ N = ( K ` D ) \/ N = ( I ` ( K ` B ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
174 |
139 173
|
syl |
|- ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
175 |
|
elpri |
|- ( N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } -> ( N = ( K ` ( I ` C ) ) \/ N = ( I ` ( K ` ( I ` A ) ) ) ) ) |
176 |
1 2 3 4 141
|
kur14lem3 |
|- ( K ` ( I ` C ) ) C_ X |
177 |
126
|
fveq2i |
|- ( K ` ( I ` C ) ) = ( K ` ( X \ ( K ` ( I ` A ) ) ) ) |
178 |
177
|
difeq2i |
|- ( X \ ( K ` ( I ` C ) ) ) = ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) ) |
179 |
1 2 3 4 122
|
kur14lem2 |
|- ( I ` ( K ` ( I ` A ) ) ) = ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) ) |
180 |
178 179
|
eqtr4i |
|- ( X \ ( K ` ( I ` C ) ) ) = ( I ` ( K ` ( I ` A ) ) ) |
181 |
|
fvex |
|- ( I ` ( K ` ( I ` A ) ) ) e. _V |
182 |
181
|
prid2 |
|- ( I ` ( K ` ( I ` A ) ) ) e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } |
183 |
147 182
|
sselii |
|- ( I ` ( K ` ( I ` A ) ) ) e. T |
184 |
180 183
|
eqeltri |
|- ( X \ ( K ` ( I ` C ) ) ) e. T |
185 |
1 2 3 4 141
|
kur14lem5 |
|- ( K ` ( K ` ( I ` C ) ) ) = ( K ` ( I ` C ) ) |
186 |
185 150
|
eqeltri |
|- ( K ` ( K ` ( I ` C ) ) ) e. T |
187 |
176 184 186
|
kur14lem1 |
|- ( N = ( K ` ( I ` C ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
188 |
|
difss |
|- ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) ) C_ X |
189 |
179 188
|
eqsstri |
|- ( I ` ( K ` ( I ` A ) ) ) C_ X |
190 |
180
|
difeq2i |
|- ( X \ ( X \ ( K ` ( I ` C ) ) ) ) = ( X \ ( I ` ( K ` ( I ` A ) ) ) ) |
191 |
1 2 3 4 176
|
kur14lem4 |
|- ( X \ ( X \ ( K ` ( I ` C ) ) ) ) = ( K ` ( I ` C ) ) |
192 |
190 191
|
eqtr3i |
|- ( X \ ( I ` ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` C ) ) |
193 |
192 150
|
eqeltri |
|- ( X \ ( I ` ( K ` ( I ` A ) ) ) ) e. T |
194 |
1 2 3 4 23 69
|
kur14lem6 |
|- ( K ` ( I ` ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` A ) ) |
195 |
194 88
|
eqeltri |
|- ( K ` ( I ` ( K ` ( I ` A ) ) ) ) e. T |
196 |
189 193 195
|
kur14lem1 |
|- ( N = ( I ` ( K ` ( I ` A ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
197 |
187 196
|
jaoi |
|- ( ( N = ( K ` ( I ` C ) ) \/ N = ( I ` ( K ` ( I ` A ) ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
198 |
175 197
|
syl |
|- ( N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
199 |
174 198
|
jaoi |
|- ( ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } \/ N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
200 |
138 199
|
sylbi |
|- ( N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
201 |
137 200
|
jaoi |
|- ( ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) \/ N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
202 |
10 201
|
sylbi |
|- ( N e. ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |
203 |
202 9
|
eleq2s |
|- ( N e. T -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) ) |