Metamath Proof Explorer


Theorem kur14lem7

Description: Lemma for kur14 : main proof. The set T here contains all the distinct combinations of k and c that can arise, and we prove here that applying k or c to any element of T yields another elemnt of T . In operator shorthand, we have T = { A , c A , k A , c k A , k c A , c k c A , k c k A , c k c k A , k c k c A , c k c k c A , k c k c k A , c k c k c k A , k c k c k c A , c k c k c k c A } . From the identities c c A = A and k k A = k A , we can reduce any operator combination containing two adjacent identical operators, which is why the list only contains alternating sequences. The reason the sequences don't keep going after a certain point is due to the identity k c k A = k c k c k c k A , proved in kur14lem6 . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j
|- J e. Top
kur14lem.x
|- X = U. J
kur14lem.k
|- K = ( cls ` J )
kur14lem.i
|- I = ( int ` J )
kur14lem.a
|- A C_ X
kur14lem.b
|- B = ( X \ ( K ` A ) )
kur14lem.c
|- C = ( K ` ( X \ A ) )
kur14lem.d
|- D = ( I ` ( K ` A ) )
kur14lem.t
|- T = ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) )
Assertion kur14lem7
|- ( N e. T -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )

Proof

Step Hyp Ref Expression
1 kur14lem.j
 |-  J e. Top
2 kur14lem.x
 |-  X = U. J
3 kur14lem.k
 |-  K = ( cls ` J )
4 kur14lem.i
 |-  I = ( int ` J )
5 kur14lem.a
 |-  A C_ X
6 kur14lem.b
 |-  B = ( X \ ( K ` A ) )
7 kur14lem.c
 |-  C = ( K ` ( X \ A ) )
8 kur14lem.d
 |-  D = ( I ` ( K ` A ) )
9 kur14lem.t
 |-  T = ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) )
10 elun
 |-  ( N e. ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) <-> ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) \/ N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) )
11 elun
 |-  ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) <-> ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) \/ N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) )
12 elun
 |-  ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) <-> ( N e. { A , ( X \ A ) , ( K ` A ) } \/ N e. { B , C , ( I ` A ) } ) )
13 eltpi
 |-  ( N e. { A , ( X \ A ) , ( K ` A ) } -> ( N = A \/ N = ( X \ A ) \/ N = ( K ` A ) ) )
14 ssun1
 |-  { A , ( X \ A ) , ( K ` A ) } C_ ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } )
15 ssun1
 |-  ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) C_ ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } )
16 ssun1
 |-  ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) C_ ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) )
17 16 9 sseqtrri
 |-  ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) C_ T
18 15 17 sstri
 |-  ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) C_ T
19 14 18 sstri
 |-  { A , ( X \ A ) , ( K ` A ) } C_ T
20 2 topopn
 |-  ( J e. Top -> X e. J )
21 1 20 ax-mp
 |-  X e. J
22 21 elexi
 |-  X e. _V
23 difss
 |-  ( X \ A ) C_ X
24 22 23 ssexi
 |-  ( X \ A ) e. _V
25 24 tpid2
 |-  ( X \ A ) e. { A , ( X \ A ) , ( K ` A ) }
26 19 25 sselii
 |-  ( X \ A ) e. T
27 fvex
 |-  ( K ` A ) e. _V
28 27 tpid3
 |-  ( K ` A ) e. { A , ( X \ A ) , ( K ` A ) }
29 19 28 sselii
 |-  ( K ` A ) e. T
30 5 26 29 kur14lem1
 |-  ( N = A -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
31 1 2 3 4 5 kur14lem4
 |-  ( X \ ( X \ A ) ) = A
32 22 5 ssexi
 |-  A e. _V
33 32 tpid1
 |-  A e. { A , ( X \ A ) , ( K ` A ) }
34 19 33 sselii
 |-  A e. T
35 31 34 eqeltri
 |-  ( X \ ( X \ A ) ) e. T
36 ssun2
 |-  { B , C , ( I ` A ) } C_ ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } )
37 36 18 sstri
 |-  { B , C , ( I ` A ) } C_ T
38 1 2 3 4 23 kur14lem3
 |-  ( K ` ( X \ A ) ) C_ X
39 7 38 eqsstri
 |-  C C_ X
40 22 39 ssexi
 |-  C e. _V
41 40 tpid2
 |-  C e. { B , C , ( I ` A ) }
42 37 41 sselii
 |-  C e. T
43 7 42 eqeltrri
 |-  ( K ` ( X \ A ) ) e. T
44 23 35 43 kur14lem1
 |-  ( N = ( X \ A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
45 1 2 3 4 5 kur14lem3
 |-  ( K ` A ) C_ X
46 difss
 |-  ( X \ ( K ` A ) ) C_ X
47 6 46 eqsstri
 |-  B C_ X
48 22 47 ssexi
 |-  B e. _V
49 48 tpid1
 |-  B e. { B , C , ( I ` A ) }
50 37 49 sselii
 |-  B e. T
51 6 50 eqeltrri
 |-  ( X \ ( K ` A ) ) e. T
52 1 2 3 4 5 kur14lem5
 |-  ( K ` ( K ` A ) ) = ( K ` A )
53 52 29 eqeltri
 |-  ( K ` ( K ` A ) ) e. T
54 45 51 53 kur14lem1
 |-  ( N = ( K ` A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
55 30 44 54 3jaoi
 |-  ( ( N = A \/ N = ( X \ A ) \/ N = ( K ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
56 13 55 syl
 |-  ( N e. { A , ( X \ A ) , ( K ` A ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
57 eltpi
 |-  ( N e. { B , C , ( I ` A ) } -> ( N = B \/ N = C \/ N = ( I ` A ) ) )
58 6 difeq2i
 |-  ( X \ B ) = ( X \ ( X \ ( K ` A ) ) )
59 1 2 3 4 45 kur14lem4
 |-  ( X \ ( X \ ( K ` A ) ) ) = ( K ` A )
60 58 59 eqtri
 |-  ( X \ B ) = ( K ` A )
61 60 29 eqeltri
 |-  ( X \ B ) e. T
62 ssun2
 |-  { ( K ` B ) , D , ( K ` ( I ` A ) ) } C_ ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } )
63 62 17 sstri
 |-  { ( K ` B ) , D , ( K ` ( I ` A ) ) } C_ T
64 fvex
 |-  ( K ` B ) e. _V
65 64 tpid1
 |-  ( K ` B ) e. { ( K ` B ) , D , ( K ` ( I ` A ) ) }
66 63 65 sselii
 |-  ( K ` B ) e. T
67 47 61 66 kur14lem1
 |-  ( N = B -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
68 7 difeq2i
 |-  ( X \ C ) = ( X \ ( K ` ( X \ A ) ) )
69 1 2 3 4 5 kur14lem2
 |-  ( I ` A ) = ( X \ ( K ` ( X \ A ) ) )
70 68 69 eqtr4i
 |-  ( X \ C ) = ( I ` A )
71 fvex
 |-  ( I ` A ) e. _V
72 71 tpid3
 |-  ( I ` A ) e. { B , C , ( I ` A ) }
73 37 72 sselii
 |-  ( I ` A ) e. T
74 70 73 eqeltri
 |-  ( X \ C ) e. T
75 1 2 3 4 23 kur14lem5
 |-  ( K ` ( K ` ( X \ A ) ) ) = ( K ` ( X \ A ) )
76 7 fveq2i
 |-  ( K ` C ) = ( K ` ( K ` ( X \ A ) ) )
77 75 76 7 3eqtr4i
 |-  ( K ` C ) = C
78 77 42 eqeltri
 |-  ( K ` C ) e. T
79 39 74 78 kur14lem1
 |-  ( N = C -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
80 difss
 |-  ( X \ ( K ` ( X \ A ) ) ) C_ X
81 69 80 eqsstri
 |-  ( I ` A ) C_ X
82 70 difeq2i
 |-  ( X \ ( X \ C ) ) = ( X \ ( I ` A ) )
83 1 2 3 4 39 kur14lem4
 |-  ( X \ ( X \ C ) ) = C
84 82 83 eqtr3i
 |-  ( X \ ( I ` A ) ) = C
85 84 42 eqeltri
 |-  ( X \ ( I ` A ) ) e. T
86 fvex
 |-  ( K ` ( I ` A ) ) e. _V
87 86 tpid3
 |-  ( K ` ( I ` A ) ) e. { ( K ` B ) , D , ( K ` ( I ` A ) ) }
88 63 87 sselii
 |-  ( K ` ( I ` A ) ) e. T
89 81 85 88 kur14lem1
 |-  ( N = ( I ` A ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
90 67 79 89 3jaoi
 |-  ( ( N = B \/ N = C \/ N = ( I ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
91 57 90 syl
 |-  ( N e. { B , C , ( I ` A ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
92 56 91 jaoi
 |-  ( ( N e. { A , ( X \ A ) , ( K ` A ) } \/ N e. { B , C , ( I ` A ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
93 12 92 sylbi
 |-  ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
94 eltpi
 |-  ( N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } -> ( N = ( K ` B ) \/ N = D \/ N = ( K ` ( I ` A ) ) ) )
95 1 2 3 4 47 kur14lem3
 |-  ( K ` B ) C_ X
96 1 2 3 4 45 kur14lem2
 |-  ( I ` ( K ` A ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) )
97 6 fveq2i
 |-  ( K ` B ) = ( K ` ( X \ ( K ` A ) ) )
98 97 difeq2i
 |-  ( X \ ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` A ) ) ) )
99 96 8 98 3eqtr4i
 |-  D = ( X \ ( K ` B ) )
100 8 96 eqtri
 |-  D = ( X \ ( K ` ( X \ ( K ` A ) ) ) )
101 difss
 |-  ( X \ ( K ` ( X \ ( K ` A ) ) ) ) C_ X
102 100 101 eqsstri
 |-  D C_ X
103 22 102 ssexi
 |-  D e. _V
104 103 tpid2
 |-  D e. { ( K ` B ) , D , ( K ` ( I ` A ) ) }
105 63 104 sselii
 |-  D e. T
106 99 105 eqeltrri
 |-  ( X \ ( K ` B ) ) e. T
107 1 2 3 4 47 kur14lem5
 |-  ( K ` ( K ` B ) ) = ( K ` B )
108 107 66 eqeltri
 |-  ( K ` ( K ` B ) ) e. T
109 95 106 108 kur14lem1
 |-  ( N = ( K ` B ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
110 99 difeq2i
 |-  ( X \ D ) = ( X \ ( X \ ( K ` B ) ) )
111 1 2 3 4 95 kur14lem4
 |-  ( X \ ( X \ ( K ` B ) ) ) = ( K ` B )
112 110 111 eqtri
 |-  ( X \ D ) = ( K ` B )
113 112 66 eqeltri
 |-  ( X \ D ) e. T
114 ssun1
 |-  { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } C_ ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } )
115 ssun2
 |-  ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) C_ ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) )
116 115 9 sseqtrri
 |-  ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) C_ T
117 114 116 sstri
 |-  { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } C_ T
118 fvex
 |-  ( K ` D ) e. _V
119 118 tpid2
 |-  ( K ` D ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) }
120 117 119 sselii
 |-  ( K ` D ) e. T
121 102 113 120 kur14lem1
 |-  ( N = D -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
122 1 2 3 4 81 kur14lem3
 |-  ( K ` ( I ` A ) ) C_ X
123 1 2 3 4 39 kur14lem2
 |-  ( I ` C ) = ( X \ ( K ` ( X \ C ) ) )
124 70 fveq2i
 |-  ( K ` ( X \ C ) ) = ( K ` ( I ` A ) )
125 124 difeq2i
 |-  ( X \ ( K ` ( X \ C ) ) ) = ( X \ ( K ` ( I ` A ) ) )
126 123 125 eqtri
 |-  ( I ` C ) = ( X \ ( K ` ( I ` A ) ) )
127 fvex
 |-  ( I ` C ) e. _V
128 127 tpid1
 |-  ( I ` C ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) }
129 117 128 sselii
 |-  ( I ` C ) e. T
130 126 129 eqeltrri
 |-  ( X \ ( K ` ( I ` A ) ) ) e. T
131 1 2 3 4 81 kur14lem5
 |-  ( K ` ( K ` ( I ` A ) ) ) = ( K ` ( I ` A ) )
132 131 88 eqeltri
 |-  ( K ` ( K ` ( I ` A ) ) ) e. T
133 122 130 132 kur14lem1
 |-  ( N = ( K ` ( I ` A ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
134 109 121 133 3jaoi
 |-  ( ( N = ( K ` B ) \/ N = D \/ N = ( K ` ( I ` A ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
135 94 134 syl
 |-  ( N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
136 93 135 jaoi
 |-  ( ( N e. ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) \/ N e. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
137 11 136 sylbi
 |-  ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
138 elun
 |-  ( N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) <-> ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } \/ N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) )
139 eltpi
 |-  ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } -> ( N = ( I ` C ) \/ N = ( K ` D ) \/ N = ( I ` ( K ` B ) ) ) )
140 difss
 |-  ( X \ ( K ` ( X \ C ) ) ) C_ X
141 123 140 eqsstri
 |-  ( I ` C ) C_ X
142 126 difeq2i
 |-  ( X \ ( I ` C ) ) = ( X \ ( X \ ( K ` ( I ` A ) ) ) )
143 1 2 3 4 122 kur14lem4
 |-  ( X \ ( X \ ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` A ) )
144 142 143 eqtri
 |-  ( X \ ( I ` C ) ) = ( K ` ( I ` A ) )
145 144 88 eqeltri
 |-  ( X \ ( I ` C ) ) e. T
146 ssun2
 |-  { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } C_ ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } )
147 146 116 sstri
 |-  { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } C_ T
148 fvex
 |-  ( K ` ( I ` C ) ) e. _V
149 148 prid1
 |-  ( K ` ( I ` C ) ) e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) }
150 147 149 sselii
 |-  ( K ` ( I ` C ) ) e. T
151 141 145 150 kur14lem1
 |-  ( N = ( I ` C ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
152 1 2 3 4 102 kur14lem3
 |-  ( K ` D ) C_ X
153 99 fveq2i
 |-  ( K ` D ) = ( K ` ( X \ ( K ` B ) ) )
154 153 difeq2i
 |-  ( X \ ( K ` D ) ) = ( X \ ( K ` ( X \ ( K ` B ) ) ) )
155 1 2 3 4 95 kur14lem2
 |-  ( I ` ( K ` B ) ) = ( X \ ( K ` ( X \ ( K ` B ) ) ) )
156 154 155 eqtr4i
 |-  ( X \ ( K ` D ) ) = ( I ` ( K ` B ) )
157 fvex
 |-  ( I ` ( K ` B ) ) e. _V
158 157 tpid3
 |-  ( I ` ( K ` B ) ) e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) }
159 117 158 sselii
 |-  ( I ` ( K ` B ) ) e. T
160 156 159 eqeltri
 |-  ( X \ ( K ` D ) ) e. T
161 1 2 3 4 102 kur14lem5
 |-  ( K ` ( K ` D ) ) = ( K ` D )
162 161 120 eqeltri
 |-  ( K ` ( K ` D ) ) e. T
163 152 160 162 kur14lem1
 |-  ( N = ( K ` D ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
164 difss
 |-  ( X \ ( K ` ( X \ ( K ` B ) ) ) ) C_ X
165 155 164 eqsstri
 |-  ( I ` ( K ` B ) ) C_ X
166 156 difeq2i
 |-  ( X \ ( X \ ( K ` D ) ) ) = ( X \ ( I ` ( K ` B ) ) )
167 1 2 3 4 152 kur14lem4
 |-  ( X \ ( X \ ( K ` D ) ) ) = ( K ` D )
168 166 167 eqtr3i
 |-  ( X \ ( I ` ( K ` B ) ) ) = ( K ` D )
169 168 120 eqeltri
 |-  ( X \ ( I ` ( K ` B ) ) ) e. T
170 1 2 3 4 5 6 kur14lem6
 |-  ( K ` ( I ` ( K ` B ) ) ) = ( K ` B )
171 170 66 eqeltri
 |-  ( K ` ( I ` ( K ` B ) ) ) e. T
172 165 169 171 kur14lem1
 |-  ( N = ( I ` ( K ` B ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
173 151 163 172 3jaoi
 |-  ( ( N = ( I ` C ) \/ N = ( K ` D ) \/ N = ( I ` ( K ` B ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
174 139 173 syl
 |-  ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
175 elpri
 |-  ( N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } -> ( N = ( K ` ( I ` C ) ) \/ N = ( I ` ( K ` ( I ` A ) ) ) ) )
176 1 2 3 4 141 kur14lem3
 |-  ( K ` ( I ` C ) ) C_ X
177 126 fveq2i
 |-  ( K ` ( I ` C ) ) = ( K ` ( X \ ( K ` ( I ` A ) ) ) )
178 177 difeq2i
 |-  ( X \ ( K ` ( I ` C ) ) ) = ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) )
179 1 2 3 4 122 kur14lem2
 |-  ( I ` ( K ` ( I ` A ) ) ) = ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) )
180 178 179 eqtr4i
 |-  ( X \ ( K ` ( I ` C ) ) ) = ( I ` ( K ` ( I ` A ) ) )
181 fvex
 |-  ( I ` ( K ` ( I ` A ) ) ) e. _V
182 181 prid2
 |-  ( I ` ( K ` ( I ` A ) ) ) e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) }
183 147 182 sselii
 |-  ( I ` ( K ` ( I ` A ) ) ) e. T
184 180 183 eqeltri
 |-  ( X \ ( K ` ( I ` C ) ) ) e. T
185 1 2 3 4 141 kur14lem5
 |-  ( K ` ( K ` ( I ` C ) ) ) = ( K ` ( I ` C ) )
186 185 150 eqeltri
 |-  ( K ` ( K ` ( I ` C ) ) ) e. T
187 176 184 186 kur14lem1
 |-  ( N = ( K ` ( I ` C ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
188 difss
 |-  ( X \ ( K ` ( X \ ( K ` ( I ` A ) ) ) ) ) C_ X
189 179 188 eqsstri
 |-  ( I ` ( K ` ( I ` A ) ) ) C_ X
190 180 difeq2i
 |-  ( X \ ( X \ ( K ` ( I ` C ) ) ) ) = ( X \ ( I ` ( K ` ( I ` A ) ) ) )
191 1 2 3 4 176 kur14lem4
 |-  ( X \ ( X \ ( K ` ( I ` C ) ) ) ) = ( K ` ( I ` C ) )
192 190 191 eqtr3i
 |-  ( X \ ( I ` ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` C ) )
193 192 150 eqeltri
 |-  ( X \ ( I ` ( K ` ( I ` A ) ) ) ) e. T
194 1 2 3 4 23 69 kur14lem6
 |-  ( K ` ( I ` ( K ` ( I ` A ) ) ) ) = ( K ` ( I ` A ) )
195 194 88 eqeltri
 |-  ( K ` ( I ` ( K ` ( I ` A ) ) ) ) e. T
196 189 193 195 kur14lem1
 |-  ( N = ( I ` ( K ` ( I ` A ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
197 187 196 jaoi
 |-  ( ( N = ( K ` ( I ` C ) ) \/ N = ( I ` ( K ` ( I ` A ) ) ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
198 175 197 syl
 |-  ( N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
199 174 198 jaoi
 |-  ( ( N e. { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } \/ N e. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
200 138 199 sylbi
 |-  ( N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
201 137 200 jaoi
 |-  ( ( N e. ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) \/ N e. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
202 10 201 sylbi
 |-  ( N e. ( ( ( { A , ( X \ A ) , ( K ` A ) } u. { B , C , ( I ` A ) } ) u. { ( K ` B ) , D , ( K ` ( I ` A ) ) } ) u. ( { ( I ` C ) , ( K ` D ) , ( I ` ( K ` B ) ) } u. { ( K ` ( I ` C ) ) , ( I ` ( K ` ( I ` A ) ) ) } ) ) -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )
203 202 9 eleq2s
 |-  ( N e. T -> ( N C_ X /\ { ( X \ N ) , ( K ` N ) } C_ T ) )