Metamath Proof Explorer


Theorem tpid2

Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Hypothesis tpid2.1 𝐵 ∈ V
Assertion tpid2 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 }

Proof

Step Hyp Ref Expression
1 tpid2.1 𝐵 ∈ V
2 eqid 𝐵 = 𝐵
3 2 3mix2i ( 𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶 )
4 1 eltp ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶 ) )
5 3 4 mpbir 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 }