Metamath Proof Explorer


Theorem sscon

Description: Contraposition law for subsets. Exercise 15 of TakeutiZaring p. 22. (Contributed by NM, 22-Mar-1998)

Ref Expression
Assertion sscon ABCBCA

Proof

Step Hyp Ref Expression
1 ssel ABxAxB
2 1 con3d AB¬xB¬xA
3 2 anim2d ABxC¬xBxC¬xA
4 eldif xCBxC¬xB
5 eldif xCAxC¬xA
6 3 4 5 3imtr4g ABxCBxCA
7 6 ssrdv ABCBCA