Description: An element of a basis is a vector. (Contributed by Mario Carneiro, 24-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lbsss.v | |- V = ( Base ` W ) |
|
lbsss.j | |- J = ( LBasis ` W ) |
||
Assertion | lbsel | |- ( ( B e. J /\ E e. B ) -> E e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsss.v | |- V = ( Base ` W ) |
|
2 | lbsss.j | |- J = ( LBasis ` W ) |
|
3 | 1 2 | lbsss | |- ( B e. J -> B C_ V ) |
4 | 3 | sselda | |- ( ( B e. J /\ E e. B ) -> E e. V ) |