Metamath Proof Explorer


Theorem lbsel

Description: An element of a basis is a vector. (Contributed by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lbsss.v
|- V = ( Base ` W )
lbsss.j
|- J = ( LBasis ` W )
Assertion lbsel
|- ( ( B e. J /\ E e. B ) -> E e. V )

Proof

Step Hyp Ref Expression
1 lbsss.v
 |-  V = ( Base ` W )
2 lbsss.j
 |-  J = ( LBasis ` W )
3 1 2 lbsss
 |-  ( B e. J -> B C_ V )
4 3 sselda
 |-  ( ( B e. J /\ E e. B ) -> E e. V )