Metamath Proof Explorer


Theorem le9lt10

Description: A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021)

Ref Expression
Hypotheses le9lt10.c
|- A e. NN0
le9lt10.e
|- A <_ 9
Assertion le9lt10
|- A < ; 1 0

Proof

Step Hyp Ref Expression
1 le9lt10.c
 |-  A e. NN0
2 le9lt10.e
 |-  A <_ 9
3 1 nn0zi
 |-  A e. ZZ
4 9nn0
 |-  9 e. NN0
5 4 nn0zi
 |-  9 e. ZZ
6 zleltp1
 |-  ( ( A e. ZZ /\ 9 e. ZZ ) -> ( A <_ 9 <-> A < ( 9 + 1 ) ) )
7 3 5 6 mp2an
 |-  ( A <_ 9 <-> A < ( 9 + 1 ) )
8 2 7 mpbi
 |-  A < ( 9 + 1 )
9 9p1e10
 |-  ( 9 + 1 ) = ; 1 0
10 8 9 breqtri
 |-  A < ; 1 0