Metamath Proof Explorer


Theorem leabsi

Description: A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis sqrtthi.1
|- A e. RR
Assertion leabsi
|- A <_ ( abs ` A )

Proof

Step Hyp Ref Expression
1 sqrtthi.1
 |-  A e. RR
2 leabs
 |-  ( A e. RR -> A <_ ( abs ` A ) )
3 1 2 ax-mp
 |-  A <_ ( abs ` A )