Metamath Proof Explorer
Description: Specialization of breq2d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
leeq2d.1 |
|- ( ph -> A <_ C ) |
|
|
leeq2d.2 |
|- ( ph -> C = D ) |
|
|
leeq2d.3 |
|- ( ph -> A e. RR ) |
|
|
leeq2d.4 |
|- ( ph -> C e. RR ) |
|
Assertion |
leeq2d |
|- ( ph -> A <_ D ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leeq2d.1 |
|- ( ph -> A <_ C ) |
| 2 |
|
leeq2d.2 |
|- ( ph -> C = D ) |
| 3 |
|
leeq2d.3 |
|- ( ph -> A e. RR ) |
| 4 |
|
leeq2d.4 |
|- ( ph -> C e. RR ) |
| 5 |
1 2
|
breqtrd |
|- ( ph -> A <_ D ) |