Metamath Proof Explorer


Theorem leeq2d

Description: Specialization of breq2d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses leeq2d.1 φ A C
leeq2d.2 φ C = D
leeq2d.3 φ A
leeq2d.4 φ C
Assertion leeq2d φ A D

Proof

Step Hyp Ref Expression
1 leeq2d.1 φ A C
2 leeq2d.2 φ C = D
3 leeq2d.3 φ A
4 leeq2d.4 φ C
5 1 2 breqtrd φ A D