Description: Transitive law, weaker form of lelttr . (Contributed by AV, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leltletr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A <_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ C e. RR ) ) |
|
| 2 | lelttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |
|
| 3 | ltle | |- ( ( A e. RR /\ C e. RR ) -> ( A < C -> A <_ C ) ) |
|
| 4 | 1 2 3 | sylsyld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A <_ C ) ) |