Metamath Proof Explorer


Theorem lemeet1

Description: A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetval2.b
|- B = ( Base ` K )
meetval2.l
|- .<_ = ( le ` K )
meetval2.m
|- ./\ = ( meet ` K )
meetval2.k
|- ( ph -> K e. V )
meetval2.x
|- ( ph -> X e. B )
meetval2.y
|- ( ph -> Y e. B )
meetlem.e
|- ( ph -> <. X , Y >. e. dom ./\ )
Assertion lemeet1
|- ( ph -> ( X ./\ Y ) .<_ X )

Proof

Step Hyp Ref Expression
1 meetval2.b
 |-  B = ( Base ` K )
2 meetval2.l
 |-  .<_ = ( le ` K )
3 meetval2.m
 |-  ./\ = ( meet ` K )
4 meetval2.k
 |-  ( ph -> K e. V )
5 meetval2.x
 |-  ( ph -> X e. B )
6 meetval2.y
 |-  ( ph -> Y e. B )
7 meetlem.e
 |-  ( ph -> <. X , Y >. e. dom ./\ )
8 1 2 3 4 5 6 7 meetlem
 |-  ( ph -> ( ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) .<_ Y ) /\ A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) )
9 8 simplld
 |-  ( ph -> ( X ./\ Y ) .<_ X )