Metamath Proof Explorer


Theorem lgscl1

Description: The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion lgscl1
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. { -u 1 , 0 , 1 } )

Proof

Step Hyp Ref Expression
1 lgsle1
 |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( abs ` ( A /L N ) ) <_ 1 )
2 lgscl
 |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ )
3 zabsle1
 |-  ( ( A /L N ) e. ZZ -> ( ( A /L N ) e. { -u 1 , 0 , 1 } <-> ( abs ` ( A /L N ) ) <_ 1 ) )
4 2 3 syl
 |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( ( A /L N ) e. { -u 1 , 0 , 1 } <-> ( abs ` ( A /L N ) ) <_ 1 ) )
5 1 4 mpbird
 |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. { -u 1 , 0 , 1 } )