Metamath Proof Explorer


Theorem lgsle1

Description: The Legendre symbol has absolute value less than or equal to 1. Together with lgscl this implies that it takes values in { -u 1 , 0 , 1 } . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsle1
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( abs ` ( A /L N ) ) <_ 1 )

Proof

Step Hyp Ref Expression
1 eqid
 |-  { x e. ZZ | ( abs ` x ) <_ 1 } = { x e. ZZ | ( abs ` x ) <_ 1 }
2 1 lgscl2
 |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. { x e. ZZ | ( abs ` x ) <_ 1 } )
3 fveq2
 |-  ( x = ( A /L N ) -> ( abs ` x ) = ( abs ` ( A /L N ) ) )
4 3 breq1d
 |-  ( x = ( A /L N ) -> ( ( abs ` x ) <_ 1 <-> ( abs ` ( A /L N ) ) <_ 1 ) )
5 4 elrab
 |-  ( ( A /L N ) e. { x e. ZZ | ( abs ` x ) <_ 1 } <-> ( ( A /L N ) e. ZZ /\ ( abs ` ( A /L N ) ) <_ 1 ) )
6 5 simprbi
 |-  ( ( A /L N ) e. { x e. ZZ | ( abs ` x ) <_ 1 } -> ( abs ` ( A /L N ) ) <_ 1 )
7 2 6 syl
 |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( abs ` ( A /L N ) ) <_ 1 )