Description: Closure of the function F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lgsval.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
|
| Assertion | lgsfcl | |- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsval.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
|
| 2 | eqid | |- { x e. ZZ | ( abs ` x ) <_ 1 } = { x e. ZZ | ( abs ` x ) <_ 1 } |
|
| 3 | 1 2 | lgsfcl2 | |- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> { x e. ZZ | ( abs ` x ) <_ 1 } ) |
| 4 | ssrab2 | |- { x e. ZZ | ( abs ` x ) <_ 1 } C_ ZZ |
|
| 5 | fss | |- ( ( F : NN --> { x e. ZZ | ( abs ` x ) <_ 1 } /\ { x e. ZZ | ( abs ` x ) <_ 1 } C_ ZZ ) -> F : NN --> ZZ ) |
|
| 6 | 3 4 5 | sylancl | |- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> ZZ ) |