| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsval.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
| 2 |
|
lgsfcl2.z |
|- Z = { x e. ZZ | ( abs ` x ) <_ 1 } |
| 3 |
|
0z |
|- 0 e. ZZ |
| 4 |
|
0le1 |
|- 0 <_ 1 |
| 5 |
|
fveq2 |
|- ( x = 0 -> ( abs ` x ) = ( abs ` 0 ) ) |
| 6 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 7 |
5 6
|
eqtrdi |
|- ( x = 0 -> ( abs ` x ) = 0 ) |
| 8 |
7
|
breq1d |
|- ( x = 0 -> ( ( abs ` x ) <_ 1 <-> 0 <_ 1 ) ) |
| 9 |
8 2
|
elrab2 |
|- ( 0 e. Z <-> ( 0 e. ZZ /\ 0 <_ 1 ) ) |
| 10 |
3 4 9
|
mpbir2an |
|- 0 e. Z |
| 11 |
|
1z |
|- 1 e. ZZ |
| 12 |
|
1le1 |
|- 1 <_ 1 |
| 13 |
|
fveq2 |
|- ( x = 1 -> ( abs ` x ) = ( abs ` 1 ) ) |
| 14 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 15 |
13 14
|
eqtrdi |
|- ( x = 1 -> ( abs ` x ) = 1 ) |
| 16 |
15
|
breq1d |
|- ( x = 1 -> ( ( abs ` x ) <_ 1 <-> 1 <_ 1 ) ) |
| 17 |
16 2
|
elrab2 |
|- ( 1 e. Z <-> ( 1 e. ZZ /\ 1 <_ 1 ) ) |
| 18 |
11 12 17
|
mpbir2an |
|- 1 e. Z |
| 19 |
|
neg1z |
|- -u 1 e. ZZ |
| 20 |
|
fveq2 |
|- ( x = -u 1 -> ( abs ` x ) = ( abs ` -u 1 ) ) |
| 21 |
|
ax-1cn |
|- 1 e. CC |
| 22 |
21
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 23 |
22 14
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
| 24 |
20 23
|
eqtrdi |
|- ( x = -u 1 -> ( abs ` x ) = 1 ) |
| 25 |
24
|
breq1d |
|- ( x = -u 1 -> ( ( abs ` x ) <_ 1 <-> 1 <_ 1 ) ) |
| 26 |
25 2
|
elrab2 |
|- ( -u 1 e. Z <-> ( -u 1 e. ZZ /\ 1 <_ 1 ) ) |
| 27 |
19 12 26
|
mpbir2an |
|- -u 1 e. Z |
| 28 |
18 27
|
ifcli |
|- if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) e. Z |
| 29 |
10 28
|
ifcli |
|- if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) e. Z |
| 30 |
29
|
a1i |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) /\ n = 2 ) -> if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) e. Z ) |
| 31 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) -> A e. ZZ ) |
| 32 |
31
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) /\ -. n = 2 ) -> A e. ZZ ) |
| 33 |
|
simplr |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) /\ -. n = 2 ) -> n e. Prime ) |
| 34 |
|
simpr |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) /\ -. n = 2 ) -> -. n = 2 ) |
| 35 |
34
|
neqned |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) /\ -. n = 2 ) -> n =/= 2 ) |
| 36 |
|
eldifsn |
|- ( n e. ( Prime \ { 2 } ) <-> ( n e. Prime /\ n =/= 2 ) ) |
| 37 |
33 35 36
|
sylanbrc |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) /\ -. n = 2 ) -> n e. ( Prime \ { 2 } ) ) |
| 38 |
2
|
lgslem4 |
|- ( ( A e. ZZ /\ n e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) e. Z ) |
| 39 |
32 37 38
|
syl2anc |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) /\ -. n = 2 ) -> ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) e. Z ) |
| 40 |
30 39
|
ifclda |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) -> if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) e. Z ) |
| 41 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) -> n e. Prime ) |
| 42 |
|
simpll2 |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) -> N e. ZZ ) |
| 43 |
|
simpll3 |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) -> N =/= 0 ) |
| 44 |
|
pczcl |
|- ( ( n e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( n pCnt N ) e. NN0 ) |
| 45 |
41 42 43 44
|
syl12anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) -> ( n pCnt N ) e. NN0 ) |
| 46 |
2
|
ssrab3 |
|- Z C_ ZZ |
| 47 |
|
zsscn |
|- ZZ C_ CC |
| 48 |
46 47
|
sstri |
|- Z C_ CC |
| 49 |
2
|
lgslem3 |
|- ( ( a e. Z /\ b e. Z ) -> ( a x. b ) e. Z ) |
| 50 |
48 49 18
|
expcllem |
|- ( ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) e. Z /\ ( n pCnt N ) e. NN0 ) -> ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) e. Z ) |
| 51 |
40 45 50
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ n e. Prime ) -> ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) e. Z ) |
| 52 |
18
|
a1i |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) /\ -. n e. Prime ) -> 1 e. Z ) |
| 53 |
51 52
|
ifclda |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. NN ) -> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) e. Z ) |
| 54 |
53 1
|
fmptd |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> Z ) |