| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsval.1 |
|
| 2 |
|
lgsfcl2.z |
|
| 3 |
|
0z |
|
| 4 |
|
0le1 |
|
| 5 |
|
fveq2 |
|
| 6 |
|
abs0 |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
breq1d |
|
| 9 |
8 2
|
elrab2 |
|
| 10 |
3 4 9
|
mpbir2an |
|
| 11 |
|
1z |
|
| 12 |
|
1le1 |
|
| 13 |
|
fveq2 |
|
| 14 |
|
abs1 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
15
|
breq1d |
|
| 17 |
16 2
|
elrab2 |
|
| 18 |
11 12 17
|
mpbir2an |
|
| 19 |
|
neg1z |
|
| 20 |
|
fveq2 |
|
| 21 |
|
ax-1cn |
|
| 22 |
21
|
absnegi |
|
| 23 |
22 14
|
eqtri |
|
| 24 |
20 23
|
eqtrdi |
|
| 25 |
24
|
breq1d |
|
| 26 |
25 2
|
elrab2 |
|
| 27 |
19 12 26
|
mpbir2an |
|
| 28 |
18 27
|
ifcli |
|
| 29 |
10 28
|
ifcli |
|
| 30 |
29
|
a1i |
|
| 31 |
|
simpl1 |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
|
simplr |
|
| 34 |
|
simpr |
|
| 35 |
34
|
neqned |
|
| 36 |
|
eldifsn |
|
| 37 |
33 35 36
|
sylanbrc |
|
| 38 |
2
|
lgslem4 |
|
| 39 |
32 37 38
|
syl2anc |
|
| 40 |
30 39
|
ifclda |
|
| 41 |
|
simpr |
|
| 42 |
|
simpll2 |
|
| 43 |
|
simpll3 |
|
| 44 |
|
pczcl |
|
| 45 |
41 42 43 44
|
syl12anc |
|
| 46 |
2
|
ssrab3 |
|
| 47 |
|
zsscn |
|
| 48 |
46 47
|
sstri |
|
| 49 |
2
|
lgslem3 |
|
| 50 |
48 49 18
|
expcllem |
|
| 51 |
40 45 50
|
syl2anc |
|
| 52 |
18
|
a1i |
|
| 53 |
51 52
|
ifclda |
|
| 54 |
53 1
|
fmptd |
|