Metamath Proof Explorer


Theorem zabsle1

Description: { -u 1 , 0 , 1 } is the set of all integers with absolute value at most 1 . (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion zabsle1 ZZ101Z1

Proof

Step Hyp Ref Expression
1 eltpi Z101Z=1Z=0Z=1
2 fveq2 Z=1Z=1
3 ax-1cn 1
4 3 absnegi 1=1
5 abs1 1=1
6 4 5 eqtri 1=1
7 1le1 11
8 6 7 eqbrtri 11
9 2 8 eqbrtrdi Z=1Z1
10 fveq2 Z=0Z=0
11 abs0 0=0
12 0le1 01
13 11 12 eqbrtri 01
14 10 13 eqbrtrdi Z=0Z1
15 fveq2 Z=1Z=1
16 5 7 eqbrtri 11
17 15 16 eqbrtrdi Z=1Z1
18 9 14 17 3jaoi Z=1Z=0Z=1Z1
19 1 18 syl Z101Z1
20 zre ZZ
21 1red Z1
22 20 21 absled ZZ11ZZ1
23 elz ZZZ=0ZZ
24 3mix2 Z=0Z=1Z=0Z=1
25 24 a1d Z=0Z1ZZ1Z=1Z=0Z=1
26 nnle1eq1 ZZ1Z=1
27 26 biimpac Z1ZZ=1
28 27 3mix3d Z1ZZ=1Z=0Z=1
29 28 ex Z1ZZ=1Z=0Z=1
30 29 adantl 1ZZ1ZZ=1Z=0Z=1
31 30 adantl Z1ZZ1ZZ=1Z=0Z=1
32 31 com12 ZZ1ZZ1Z=1Z=0Z=1
33 elnnz1 ZZ1Z
34 1red Z1
35 lenegcon2 1Z1ZZ1
36 34 35 mpancom Z1ZZ1
37 neg1rr 1
38 37 a1i Z1
39 id ZZ
40 38 39 letri3d Z1=Z1ZZ1
41 3mix1 Z=1Z=1Z=0Z=1
42 41 eqcoms 1=ZZ=1Z=0Z=1
43 40 42 syl6bir Z1ZZ1Z=1Z=0Z=1
44 43 com12 1ZZ1ZZ=1Z=0Z=1
45 44 ex 1ZZ1ZZ=1Z=0Z=1
46 45 adantr 1ZZ1Z1ZZ=1Z=0Z=1
47 46 com13 ZZ11ZZ1Z=1Z=0Z=1
48 36 47 sylbid Z1Z1ZZ1Z=1Z=0Z=1
49 48 com12 1ZZ1ZZ1Z=1Z=0Z=1
50 49 impd 1ZZ1ZZ1Z=1Z=0Z=1
51 50 adantl Z1ZZ1ZZ1Z=1Z=0Z=1
52 33 51 sylbi ZZ1ZZ1Z=1Z=0Z=1
53 25 32 52 3jaoi Z=0ZZZ1ZZ1Z=1Z=0Z=1
54 53 imp Z=0ZZZ1ZZ1Z=1Z=0Z=1
55 eltpg ZZ101Z=1Z=0Z=1
56 55 adantr Z1ZZ1Z101Z=1Z=0Z=1
57 56 adantl Z=0ZZZ1ZZ1Z101Z=1Z=0Z=1
58 54 57 mpbird Z=0ZZZ1ZZ1Z101
59 58 exp32 Z=0ZZZ1ZZ1Z101
60 59 impcom ZZ=0ZZ1ZZ1Z101
61 23 60 sylbi Z1ZZ1Z101
62 22 61 sylbid ZZ1Z101
63 19 62 impbid2 ZZ101Z1